| Line | Branch | Exec | Source |
|---|---|---|---|
| 1 | submodule (athena__diffstruc_extd) athena__diffstruc_extd_submodule_pad | ||
| 2 | !! Submodule containing implementations for extended diffstruc array operations | ||
| 3 | |||
| 4 | contains | ||
| 5 | |||
| 6 | !############################################################################### | ||
| 7 | − | subroutine fill_edge_region_1d(input, output) | |
| 8 | !! Fill edge region for 1D padding | ||
| 9 | implicit none | ||
| 10 | |||
| 11 | ! Arguments | ||
| 12 | type(array_type), intent(in) :: input | ||
| 13 | type(array_type), intent(inout) :: output | ||
| 14 | |||
| 15 | ! Local variables | ||
| 16 | integer :: i, m, s, f | ||
| 17 | integer :: step, idx_in, idx_out | ||
| 18 | integer :: input_size, output_size, pad_size | ||
| 19 | |||
| 20 | − | input_size = input%shape(1) | |
| 21 | − | output_size = output%shape(1) | |
| 22 | − | pad_size = output%indices(2) | |
| 23 | |||
| 24 | − | do f = 1, output%indices(3) | |
| 25 | − | do concurrent( s = 1:size(output%val, dim=2), m = 1:output%shape(2) ) | |
| 26 | − | select case(output%indices(1)) | |
| 27 | case(3, 4) ! circular or reflection | ||
| 28 | − | step = merge(1, -1, output%indices(1) .eq. 3) | |
| 29 | − | do i = 1, pad_size | |
| 30 | − | idx_in = output%adj_ja(1,(f-1)*2 + 1) + step * (i - 1) + & | |
| 31 | − | (m-1)*input_size | |
| 32 | − | idx_out = output%adj_ja(2,(f-1)*2 + 1) + i - 1 + & | |
| 33 | − | (m-1)*output_size | |
| 34 | − | output%val(idx_out, s) = input%val(idx_in, s) | |
| 35 | end do | ||
| 36 | case(5) ! replication | ||
| 37 | − | idx_in = output%adj_ja(1,(f-1)*2 + 1) + (m-1)*input_size | |
| 38 | − | do i = 1, pad_size | |
| 39 | − | idx_out = output%adj_ja(2,(f-1)*2 + 1) + i - 1 + & | |
| 40 | − | (m-1)*output_size | |
| 41 | − | output%val(idx_out, s) = input%val(idx_in, s) | |
| 42 | end do | ||
| 43 | end select | ||
| 44 | end do | ||
| 45 | end do | ||
| 46 | |||
| 47 | − | end subroutine fill_edge_region_1d | |
| 48 | !------------------------------------------------------------------------------- | ||
| 49 | − | pure subroutine accumulate_edge_gradients_1d_val(upstream_grad, output, & | |
| 50 | − | input_shape, indices, adj_ja) | |
| 51 | !! Accumulate edge gradients for 1D padding - raw array version | ||
| 52 | implicit none | ||
| 53 | |||
| 54 | ! Arguments | ||
| 55 | real(real32), dimension(:,:), intent(in) :: upstream_grad | ||
| 56 | real(real32), dimension(:,:), intent(inout) :: output | ||
| 57 | integer, dimension(3), intent(in) :: input_shape | ||
| 58 | integer, dimension(:), intent(in) :: indices | ||
| 59 | integer, dimension(:,:), intent(in) :: adj_ja | ||
| 60 | |||
| 61 | ! Local variables | ||
| 62 | integer :: i, m, s, f | ||
| 63 | integer :: idx_in, idx_out | ||
| 64 | integer :: input_size, output_size | ||
| 65 | integer :: num_facets | ||
| 66 | real(real32) :: grad_sum | ||
| 67 | |||
| 68 | − | input_size = input_shape(1) | |
| 69 | − | output_size = input_size + 2 * indices(2) | |
| 70 | − | num_facets = indices(3) | |
| 71 | |||
| 72 | − | if(num_facets .eq. 0) return | |
| 73 | |||
| 74 | − | select case(indices(1)) | |
| 75 | case(3, 4) ! circular or reflection | ||
| 76 | − | do f = 1, num_facets | |
| 77 | − | do s = 1, input_shape(3) | |
| 78 | − | do m = 1, input_shape(2) | |
| 79 | − | do i = adj_ja(2,(f-1)*2 + 1), adj_ja(2,(f-1)*2 + 2) | |
| 80 | − | idx_out = i + (m-1) * output_size | |
| 81 | − | if(indices(1) .eq. 3)then ! circular | |
| 82 | − | idx_in = adj_ja(1,(f-1)*2 + 1) + & | |
| 83 | − | (i - adj_ja(2,(f-1)*2 + 1)) + (m-1) * input_size | |
| 84 | else ! reflection | ||
| 85 | − | idx_in = adj_ja(1,(f-1)*2 + 1) - & | |
| 86 | − | (i - adj_ja(2,(f-1)*2 + 1)) + (m-1) * input_size | |
| 87 | end if | ||
| 88 | − | output(idx_in, s) = output(idx_in, s) + & | |
| 89 | − | upstream_grad(idx_out, s) | |
| 90 | end do | ||
| 91 | end do | ||
| 92 | end do | ||
| 93 | end do | ||
| 94 | case(5) ! replication | ||
| 95 | − | do f = 1, num_facets | |
| 96 | − | do s = 1, input_shape(3) | |
| 97 | − | do m = 1, input_shape(2) | |
| 98 | − | grad_sum = 0._real32 | |
| 99 | − | do i = adj_ja(2,(f-1)*2 + 1), adj_ja(2,(f-1)*2 + 2) | |
| 100 | − | idx_out = i + (m-1) * output_size | |
| 101 | − | grad_sum = grad_sum + upstream_grad(idx_out, s) | |
| 102 | end do | ||
| 103 | − | idx_in = adj_ja(1,(f-1)*2 + 1) + (m-1) * input_size | |
| 104 | − | output(idx_in, s) = output(idx_in, s) + grad_sum | |
| 105 | end do | ||
| 106 | end do | ||
| 107 | end do | ||
| 108 | end select | ||
| 109 | |||
| 110 | end subroutine accumulate_edge_gradients_1d_val | ||
| 111 | !############################################################################### | ||
| 112 | |||
| 113 | |||
| 114 | !############################################################################### | ||
| 115 | − | subroutine fill_corner_region_2d(input, output) | |
| 116 | !! Fill corner region for 2D padding | ||
| 117 | implicit none | ||
| 118 | |||
| 119 | ! Arguments | ||
| 120 | type(array_type), intent(in) :: input | ||
| 121 | type(array_type), intent(inout) :: output | ||
| 122 | |||
| 123 | ! Local variables | ||
| 124 | integer :: i, j, m, s, f | ||
| 125 | integer :: step, idx_in, idx_out, idx_shift | ||
| 126 | integer :: input_h, input_w, output_h, output_w | ||
| 127 | integer :: pad_h, pad_w | ||
| 128 | integer, dimension(2,2) :: orig, dest | ||
| 129 | |||
| 130 | − | input_h = input%shape(1) | |
| 131 | − | input_w = input%shape(2) | |
| 132 | − | output_h = output%shape(1) | |
| 133 | − | output_w = output%shape(2) | |
| 134 | − | pad_h = output%indices(2) | |
| 135 | − | pad_w = output%indices(3) | |
| 136 | |||
| 137 | − | idx_shift = output%indices(4) * 4 | |
| 138 | − | do f = 1, output%indices(5) | |
| 139 | − | orig(1:2,1) = output%adj_ja(1,(f-1)*4 + 1 + idx_shift:(f-1)*4 + 2 + idx_shift) | |
| 140 | − | orig(1:2,2) = output%adj_ja(1,(f-1)*4 + 3 + idx_shift:(f-1)*4 + 4 + idx_shift) | |
| 141 | − | dest(1:2,1) = output%adj_ja(2,(f-1)*4 + 1 + idx_shift:(f-1)*4 + 2 + idx_shift) | |
| 142 | − | dest(1:2,2) = output%adj_ja(2,(f-1)*4 + 3 + idx_shift:(f-1)*4 + 4 + idx_shift) | |
| 143 | |||
| 144 | − | do concurrent( s = 1:size(output%val, dim=2), m = 1:output%shape(3) ) | |
| 145 | − | select case(output%indices(1)) | |
| 146 | case(3, 4) ! circular or reflection | ||
| 147 | − | step = merge(1, -1, output%indices(1) .eq. 3) | |
| 148 | − | do j = dest(1,2), dest(2,2) | |
| 149 | − | do i = dest(1,1), dest(2,1) | |
| 150 | − | idx_out = i + (j-1) * output_h + (m - 1) * output_h * output_w | |
| 151 | idx_in = orig(1,1) + step * (i - dest(1,1)) + & | ||
| 152 | (orig(1,2) + step * (j - dest(1,2)) - 1) * input_h + & | ||
| 153 | − | (m - 1) * input_h * input_w | |
| 154 | − | output%val(idx_out, s) = input%val(idx_in, s) | |
| 155 | end do | ||
| 156 | end do | ||
| 157 | case(5) ! replication | ||
| 158 | idx_in = orig(1,1) + (orig(1,2) - 1) * input_h + & | ||
| 159 | − | (m - 1) * input_h * input_w | |
| 160 | − | do j = dest(1,2), dest(2,2) | |
| 161 | − | do i = dest(1,1), dest(2,1) | |
| 162 | − | idx_out = i + (j-1) * output_h + (m - 1) * output_h * output_w | |
| 163 | − | output%val(idx_out, s) = input%val(idx_in, s) | |
| 164 | end do | ||
| 165 | end do | ||
| 166 | end select | ||
| 167 | end do | ||
| 168 | end do | ||
| 169 | |||
| 170 | − | end subroutine fill_corner_region_2d | |
| 171 | !------------------------------------------------------------------------------- | ||
| 172 | − | subroutine fill_edge_region_2d(input, output) | |
| 173 | !! Fill edge region for 2D padding | ||
| 174 | implicit none | ||
| 175 | |||
| 176 | ! Arguments | ||
| 177 | type(array_type), intent(in) :: input | ||
| 178 | type(array_type), intent(inout) :: output | ||
| 179 | |||
| 180 | ! Local variables | ||
| 181 | integer :: i, j, m, s, f, idim | ||
| 182 | integer :: step1, step2, idx_in, idx_out | ||
| 183 | integer :: input_h, input_w, output_h, output_w | ||
| 184 | integer :: pad_h, pad_w | ||
| 185 | integer, dimension(2,2) :: orig, dest | ||
| 186 | |||
| 187 | − | input_h = input%shape(1) | |
| 188 | − | input_w = input%shape(2) | |
| 189 | − | output_h = output%shape(1) | |
| 190 | − | output_w = output%shape(2) | |
| 191 | − | pad_h = output%indices(2) | |
| 192 | − | pad_w = output%indices(3) | |
| 193 | |||
| 194 | − | do f = 1, output%indices(4) | |
| 195 | − | idim = output%indices(5 + f) | |
| 196 | − | orig(1:2,1) = output%adj_ja(1,(f-1)*4 + 1:(f-1)*4 + 2) | |
| 197 | − | orig(1:2,2) = output%adj_ja(1,(f-1)*4 + 3:(f-1)*4 + 4) | |
| 198 | − | dest(1:2,1) = output%adj_ja(2,(f-1)*4 + 1:(f-1)*4 + 2) | |
| 199 | − | dest(1:2,2) = output%adj_ja(2,(f-1)*4 + 3:(f-1)*4 + 4) | |
| 200 | |||
| 201 | − | do concurrent( s = 1:size(output%val, dim=2), m = 1:output%shape(3) ) | |
| 202 | − | select case(output%indices(1)) | |
| 203 | case(3, 4) ! circular or reflection | ||
| 204 | − | step1 = merge(-1, 1, output%indices(1) .eq. 4 .and. idim .eq. 1) | |
| 205 | − | step2 = merge(-1, 1, output%indices(1) .eq. 4 .and. idim .eq. 2) | |
| 206 | − | do j = dest(1,2), dest(2,2) | |
| 207 | − | do i = dest(1,1), dest(2,1) | |
| 208 | − | idx_out = i + (j-1) * output_h + (m - 1) * output_h * output_w | |
| 209 | idx_in = orig(1,1) + step1 * (i - dest(1,1)) + & | ||
| 210 | (orig(1,2) + step2 * (j - dest(1,2)) - 1) * input_h + & | ||
| 211 | − | (m - 1) * input_h * input_w | |
| 212 | − | output%val(idx_out, s) = input%val(idx_in, s) | |
| 213 | end do | ||
| 214 | end do | ||
| 215 | case(5) ! replication | ||
| 216 | − | select case(idim) | |
| 217 | case(1) | ||
| 218 | − | do j = dest(1,2), dest(2,2) | |
| 219 | idx_in = orig(1,1) + (j - dest(1,2)) * input_h + & | ||
| 220 | − | (m - 1) * input_h * input_w | |
| 221 | − | do i = dest(1,1), dest(2,1) | |
| 222 | − | idx_out = i + (j-1) * output_h + (m - 1) * output_h * output_w | |
| 223 | − | output%val(idx_out, s) = input%val(idx_in, s) | |
| 224 | end do | ||
| 225 | end do | ||
| 226 | case(2) | ||
| 227 | − | idx_in = (orig(1,2) - 1) * input_h + (m - 1) * input_h * input_w | |
| 228 | − | do j = dest(1,2), dest(2,2) | |
| 229 | − | do i = dest(1,1), dest(2,1) | |
| 230 | − | idx_out = i + (j-1) * output_h + (m - 1) * output_h * output_w | |
| 231 | − | output%val(idx_out, s) = & | |
| 232 | − | input%val(idx_in + i - dest(1,1) + 1, s) | |
| 233 | end do | ||
| 234 | end do | ||
| 235 | end select | ||
| 236 | end select | ||
| 237 | end do | ||
| 238 | end do | ||
| 239 | |||
| 240 | − | end subroutine fill_edge_region_2d | |
| 241 | !------------------------------------------------------------------------------- | ||
| 242 | − | pure subroutine accumulate_corner_gradients_2d_val(upstream_grad, output, & | |
| 243 | − | input_shape, indices, adj_ja) | |
| 244 | !! Accumulate corner gradients for 2D padding - raw array version | ||
| 245 | implicit none | ||
| 246 | |||
| 247 | ! Arguments | ||
| 248 | real(real32), dimension(:,:), intent(in) :: upstream_grad | ||
| 249 | real(real32), dimension(:,:), intent(inout) :: output | ||
| 250 | integer, dimension(4), intent(in) :: input_shape | ||
| 251 | integer, dimension(:), intent(in) :: indices | ||
| 252 | integer, dimension(:,:), intent(in) :: adj_ja | ||
| 253 | |||
| 254 | ! Local variables | ||
| 255 | integer :: i, j, m, s, f | ||
| 256 | integer :: idx_in, idx_out | ||
| 257 | integer :: input_size_h, input_size_w | ||
| 258 | integer :: output_size_h, output_size_w | ||
| 259 | integer :: num_edge_facets, num_corner_facets | ||
| 260 | integer :: adj_ja_offset | ||
| 261 | real(real32) :: grad_sum | ||
| 262 | |||
| 263 | − | input_size_h = input_shape(1) | |
| 264 | − | input_size_w = input_shape(2) | |
| 265 | − | output_size_h = input_size_h + 2 * indices(2) | |
| 266 | − | output_size_w = input_size_w + 2 * indices(3) | |
| 267 | − | num_edge_facets = indices(4) | |
| 268 | − | num_corner_facets = indices(5) | |
| 269 | − | adj_ja_offset = num_edge_facets * 4 | |
| 270 | |||
| 271 | − | if(num_corner_facets .eq. 0) return | |
| 272 | |||
| 273 | − | select case(indices(1)) | |
| 274 | case(3) ! circular | ||
| 275 | − | do f = 1, num_corner_facets | |
| 276 | do concurrent( & | ||
| 277 | s = 1:input_shape(4), & | ||
| 278 | m = 1:input_shape(3), & | ||
| 279 | − | j = adj_ja(1,(f-1)*4 + 3 + adj_ja_offset) : & | |
| 280 | adj_ja(1,(f-1)*4 + 4 + adj_ja_offset), & | ||
| 281 | − | i = adj_ja(1,(f-1)*4 + 1 + adj_ja_offset) : & | |
| 282 | adj_ja(1,(f-1)*4 + 2 + adj_ja_offset) & | ||
| 283 | − | ) | |
| 284 | idx_in = i + (j-1) * input_size_h + & | ||
| 285 | − | (m-1) * input_size_h * input_size_w | |
| 286 | − | idx_out = ( & | |
| 287 | adj_ja(2,(f-1)*4 + 1 + adj_ja_offset) + & | ||
| 288 | − | (i - adj_ja(1,(f-1)*4 + 1 + adj_ja_offset)) & | |
| 289 | − | ) + ( & | |
| 290 | adj_ja(2,(f-1)*4 + 3 + adj_ja_offset) + & | ||
| 291 | − | (j - adj_ja(1,(f-1)*4 + 3 + adj_ja_offset)) - 1 & | |
| 292 | − | ) * output_size_h + (m-1) * output_size_h * output_size_w | |
| 293 | − | output(idx_in, s) = output(idx_in, s) + upstream_grad(idx_out, s) | |
| 294 | end do | ||
| 295 | end do | ||
| 296 | case(4) ! reflection | ||
| 297 | − | do f = 1, num_corner_facets | |
| 298 | do concurrent( & | ||
| 299 | s = 1:input_shape(4), & | ||
| 300 | m = 1:input_shape(3), & | ||
| 301 | − | j = adj_ja(1,(f-1)*4 + 4 + adj_ja_offset) : & | |
| 302 | adj_ja(1,(f-1)*4 + 3 + adj_ja_offset), & | ||
| 303 | − | i = adj_ja(1,(f-1)*4 + 2 + adj_ja_offset) : & | |
| 304 | adj_ja(1,(f-1)*4 + 1 + adj_ja_offset) & | ||
| 305 | − | ) | |
| 306 | idx_in = i + (j-1) * input_size_h + & | ||
| 307 | − | (m-1) * input_size_h * input_size_w | |
| 308 | − | idx_out = ( & | |
| 309 | adj_ja(2,(f-1)*4 + 1 + adj_ja_offset) - & | ||
| 310 | − | (i - adj_ja(1,(f-1)*4 + 1 + adj_ja_offset)) & | |
| 311 | − | ) + ( & | |
| 312 | adj_ja(2,(f-1)*4 + 4 + adj_ja_offset) - & | ||
| 313 | − | (j - adj_ja(1,(f-1)*4 + 4 + adj_ja_offset)) - 1 & | |
| 314 | − | ) * output_size_h + (m-1) * output_size_h * output_size_w | |
| 315 | − | output(idx_in, s) = output(idx_in, s) + upstream_grad(idx_out, s) | |
| 316 | end do | ||
| 317 | end do | ||
| 318 | case(5) ! replication | ||
| 319 | − | do f = 1, num_corner_facets | |
| 320 | − | do s = 1, input_shape(4) | |
| 321 | − | do m = 1, input_shape(3) | |
| 322 | − | grad_sum = 0._real32 | |
| 323 | − | do j = adj_ja(2,(f-1)*4 + 3 + adj_ja_offset), & | |
| 324 | − | adj_ja(2,(f-1)*4 + 4 + adj_ja_offset) | |
| 325 | − | do i = adj_ja(2,(f-1)*4 + 1 + adj_ja_offset), & | |
| 326 | − | adj_ja(2,(f-1)*4 + 2 + adj_ja_offset) | |
| 327 | idx_out = i + (j-1) * output_size_h + & | ||
| 328 | − | (m-1) * output_size_h * output_size_w | |
| 329 | − | grad_sum = grad_sum + upstream_grad(idx_out, s) | |
| 330 | end do | ||
| 331 | end do | ||
| 332 | − | idx_in = adj_ja(1,(f-1)*4 + 1 + adj_ja_offset) + & | |
| 333 | − | (adj_ja(1,(f-1)*4 + 3 + adj_ja_offset) - 1) * & | |
| 334 | − | input_size_h + (m-1) * input_size_h * input_size_w | |
| 335 | − | output(idx_in, s) = output(idx_in, s) + grad_sum | |
| 336 | end do | ||
| 337 | end do | ||
| 338 | end do | ||
| 339 | end select | ||
| 340 | |||
| 341 | end subroutine accumulate_corner_gradients_2d_val | ||
| 342 | !------------------------------------------------------------------------------- | ||
| 343 | − | pure subroutine accumulate_edge_gradients_2d_val(upstream_grad, output, & | |
| 344 | − | input_shape, indices, adj_ja) | |
| 345 | !! Accumulate edge gradients for 2D padding - raw array version | ||
| 346 | implicit none | ||
| 347 | |||
| 348 | ! Arguments | ||
| 349 | real(real32), dimension(:,:), intent(in) :: upstream_grad | ||
| 350 | real(real32), dimension(:,:), intent(inout) :: output | ||
| 351 | integer, dimension(4), intent(in) :: input_shape | ||
| 352 | integer, dimension(:), intent(in) :: indices | ||
| 353 | integer, dimension(:,:), intent(in) :: adj_ja | ||
| 354 | |||
| 355 | ! Local variables | ||
| 356 | integer :: i, j, m, s, f, idx | ||
| 357 | integer :: idx_in, idx_out | ||
| 358 | integer :: input_size_h, input_size_w | ||
| 359 | integer :: output_size_h, output_size_w | ||
| 360 | integer :: num_edge_facets | ||
| 361 | integer :: facet_dim | ||
| 362 | real(real32) :: grad_sum | ||
| 363 | |||
| 364 | − | input_size_h = input_shape(1) | |
| 365 | − | input_size_w = input_shape(2) | |
| 366 | − | output_size_h = input_size_h + 2 * indices(2) | |
| 367 | − | output_size_w = input_size_w + 2 * indices(3) | |
| 368 | − | num_edge_facets = indices(4) | |
| 369 | |||
| 370 | − | if(num_edge_facets .eq. 0) return | |
| 371 | |||
| 372 | − | select case(indices(1)) | |
| 373 | case(3) ! circular | ||
| 374 | − | do f = 1, num_edge_facets | |
| 375 | − | facet_dim = indices(5 + f) | |
| 376 | − | if(facet_dim .eq. 1)then | |
| 377 | do concurrent( & | ||
| 378 | s = 1:input_shape(4), & | ||
| 379 | m = 1:input_shape(3), & | ||
| 380 | − | j = adj_ja(1,(f-1)*4 + 3):adj_ja(1,(f-1)*4 + 4), & | |
| 381 | − | i = adj_ja(1,(f-1)*4 + 1):adj_ja(1,(f-1)*4 + 2)) | |
| 382 | idx_in = i + (j-1) * input_size_h + & | ||
| 383 | − | (m-1) * input_size_h * input_size_w | |
| 384 | idx_out = & | ||
| 385 | − | ( & | |
| 386 | adj_ja(2,(f-1)*4 + 1) + & | ||
| 387 | − | (i - adj_ja(1,(f-1)*4 + 1)) & | |
| 388 | ) + & | ||
| 389 | − | (j + adj_ja(2,(f-1)*4 + 3) - adj_ja(1,(f-1)*4 + 3) - 1) * & | |
| 390 | − | output_size_h + (m-1) * output_size_h * output_size_w | |
| 391 | − | output(idx_in, s) = output(idx_in, s) + & | |
| 392 | − | upstream_grad(idx_out, s) | |
| 393 | end do | ||
| 394 | else | ||
| 395 | do concurrent( & | ||
| 396 | s = 1:input_shape(4), & | ||
| 397 | m = 1:input_shape(3), & | ||
| 398 | − | j = adj_ja(1,(f-1)*4 + 3):adj_ja(1,(f-1)*4 + 4), & | |
| 399 | − | i = adj_ja(1,(f-1)*4 + 1):adj_ja(1,(f-1)*4 + 2)) | |
| 400 | idx_in = i + (j-1) * input_size_h + & | ||
| 401 | − | (m-1) * input_size_h * input_size_w | |
| 402 | idx_out = & | ||
| 403 | ( & | ||
| 404 | − | i + adj_ja(2,(f-1)*4 + 1) - & | |
| 405 | − | adj_ja(1,(f-1)*4 + 1) & | |
| 406 | − | ) + ( & | |
| 407 | adj_ja(2,(f-1)*4 + 3) + & | ||
| 408 | − | (j - adj_ja(1,(f-1)*4 + 3)) - 1 & | |
| 409 | ) * output_size_h + & | ||
| 410 | − | (m-1) * output_size_h * output_size_w | |
| 411 | − | output(idx_in, s) = output(idx_in, s) + & | |
| 412 | − | upstream_grad(idx_out, s) | |
| 413 | end do | ||
| 414 | end if | ||
| 415 | end do | ||
| 416 | case(4) ! reflection | ||
| 417 | − | do f = 1, num_edge_facets | |
| 418 | − | facet_dim = indices(5 + f) | |
| 419 | − | if(facet_dim .eq. 1)then | |
| 420 | do concurrent( & | ||
| 421 | s = 1:input_shape(4), & | ||
| 422 | m = 1:input_shape(3), & | ||
| 423 | − | j = adj_ja(1,(f-1)*4 + 3):adj_ja(1,(f-1)*4 + 4), & | |
| 424 | − | i = adj_ja(1,(f-1)*4 + 2):adj_ja(1,(f-1)*4 + 1)) | |
| 425 | idx_in = i + (j-1) * input_size_h + & | ||
| 426 | − | (m-1) * input_size_h * input_size_w | |
| 427 | idx_out = & | ||
| 428 | − | ( & | |
| 429 | adj_ja(2,(f-1)*4 + 1) - & | ||
| 430 | − | (i - adj_ja(1,(f-1)*4 + 1)) & | |
| 431 | ) + & | ||
| 432 | − | (j + adj_ja(2,(f-1)*4 + 3) - adj_ja(1,(f-1)*4 + 3) - 1) * & | |
| 433 | − | output_size_h + (m-1) * output_size_h * output_size_w | |
| 434 | − | output(idx_in, s) = output(idx_in, s) + & | |
| 435 | − | upstream_grad(idx_out, s) | |
| 436 | end do | ||
| 437 | else | ||
| 438 | do concurrent( & | ||
| 439 | s = 1:input_shape(4), & | ||
| 440 | m = 1:input_shape(3), & | ||
| 441 | − | j = adj_ja(1,(f-1)*4 + 4):adj_ja(1,(f-1)*4 + 3), & | |
| 442 | − | i = adj_ja(1,(f-1)*4 + 1):adj_ja(1,(f-1)*4 + 2)) | |
| 443 | idx_in = i + (j-1) * input_size_h + & | ||
| 444 | − | (m-1) * input_size_h * input_size_w | |
| 445 | idx_out = & | ||
| 446 | ( & | ||
| 447 | − | i + adj_ja(2,(f-1)*4 + 1) - & | |
| 448 | − | adj_ja(1,(f-1)*4 + 1) & | |
| 449 | − | ) + ( & | |
| 450 | adj_ja(2,(f-1)*4 + 4) - & | ||
| 451 | − | (j - adj_ja(1,(f-1)*4 + 4)) - 1 & | |
| 452 | ) * output_size_h + & | ||
| 453 | − | (m-1) * output_size_h * output_size_w | |
| 454 | − | output(idx_in, s) = output(idx_in, s) + & | |
| 455 | − | upstream_grad(idx_out, s) | |
| 456 | end do | ||
| 457 | end if | ||
| 458 | end do | ||
| 459 | case(5) ! replication | ||
| 460 | − | do f = 1, num_edge_facets | |
| 461 | − | facet_dim = indices(5 + f) | |
| 462 | − | if(facet_dim .eq. 1)then | |
| 463 | − | do s = 1, input_shape(4) | |
| 464 | − | do m = 1, input_shape(3) | |
| 465 | − | do j = adj_ja(1,(f-1)*4 + 3), adj_ja(1,(f-1)*4 + 4) | |
| 466 | − | grad_sum = 0._real32 | |
| 467 | − | do i = adj_ja(2,(f-1)*4 + 1), adj_ja(2,(f-1)*4 + 2) | |
| 468 | idx_out = i + & | ||
| 469 | ( & | ||
| 470 | − | j + adj_ja(2,(f-1)*4 + 3) - & | |
| 471 | − | adj_ja(1,(f-1)*4 + 3) - 1 & | |
| 472 | ) * output_size_h + & | ||
| 473 | − | (m-1) * output_size_h * output_size_w | |
| 474 | − | grad_sum = grad_sum + upstream_grad(idx_out, s) | |
| 475 | end do | ||
| 476 | − | idx_in = adj_ja(1,(f-1)*4 + 1) + (j-1) * input_size_h + & | |
| 477 | − | (m-1) * input_size_h * input_size_w | |
| 478 | − | output(idx_in, s) = output(idx_in, s) + grad_sum | |
| 479 | end do | ||
| 480 | end do | ||
| 481 | end do | ||
| 482 | else | ||
| 483 | − | do s = 1, input_shape(4) | |
| 484 | − | do m = 1, input_shape(3) | |
| 485 | − | do i = adj_ja(1,(f-1)*4 + 1), adj_ja(1,(f-1)*4 + 2) | |
| 486 | − | grad_sum = 0._real32 | |
| 487 | − | do j = adj_ja(2,(f-1)*4 + 3), adj_ja(2,(f-1)*4 + 4) | |
| 488 | idx_out = & | ||
| 489 | − | ( i + adj_ja(2,(f-1)*4 + 1) - adj_ja(1,(f-1)*4 + 1) ) + & | |
| 490 | (j-1) * output_size_h + & | ||
| 491 | − | (m-1) * output_size_h * output_size_w | |
| 492 | − | grad_sum = grad_sum + upstream_grad(idx_out, s) | |
| 493 | end do | ||
| 494 | − | idx_in = i + (adj_ja(1,(f-1)*4 + 3) - 1) * & | |
| 495 | − | input_size_h + (m-1) * input_size_h * input_size_w | |
| 496 | − | output(idx_in, s) = output(idx_in, s) + grad_sum | |
| 497 | end do | ||
| 498 | end do | ||
| 499 | end do | ||
| 500 | end if | ||
| 501 | end do | ||
| 502 | end select | ||
| 503 | |||
| 504 | end subroutine accumulate_edge_gradients_2d_val | ||
| 505 | !############################################################################### | ||
| 506 | |||
| 507 | |||
| 508 | !############################################################################### | ||
| 509 | − | subroutine fill_corner_region_3d(input, output) | |
| 510 | !! Fill corner region for 3D padding | ||
| 511 | implicit none | ||
| 512 | |||
| 513 | ! Arguments | ||
| 514 | type(array_type), intent(in) :: input | ||
| 515 | type(array_type), intent(inout) :: output | ||
| 516 | |||
| 517 | ! Local variables | ||
| 518 | integer :: i, j, k, m, s, f | ||
| 519 | integer :: step, idx_in, idx_out, idx_shift | ||
| 520 | integer :: input_h, input_w, input_d | ||
| 521 | integer :: output_h, output_w, output_d | ||
| 522 | integer, dimension(2,3) :: orig, dest | ||
| 523 | |||
| 524 | − | input_h = input%shape(1) | |
| 525 | − | input_w = input%shape(2) | |
| 526 | − | input_d = input%shape(3) | |
| 527 | − | output_h = output%shape(1) | |
| 528 | − | output_w = output%shape(2) | |
| 529 | − | output_d = output%shape(3) | |
| 530 | |||
| 531 | − | idx_shift = ( output%indices(5) + output%indices(6) ) * 6 | |
| 532 | − | do f = 1, output%indices(7) | |
| 533 | − | orig(1:2,1) = output%adj_ja(1,(f-1)*6 + 1 + idx_shift:(f-1)*6 + 2 + idx_shift) | |
| 534 | − | orig(1:2,2) = output%adj_ja(1,(f-1)*6 + 3 + idx_shift:(f-1)*6 + 4 + idx_shift) | |
| 535 | − | orig(1:2,3) = output%adj_ja(1,(f-1)*6 + 5 + idx_shift:(f-1)*6 + 6 + idx_shift) | |
| 536 | − | dest(1:2,1) = output%adj_ja(2,(f-1)*6 + 1 + idx_shift:(f-1)*6 + 2 + idx_shift) | |
| 537 | − | dest(1:2,2) = output%adj_ja(2,(f-1)*6 + 3 + idx_shift:(f-1)*6 + 4 + idx_shift) | |
| 538 | − | dest(1:2,3) = output%adj_ja(2,(f-1)*6 + 5 + idx_shift:(f-1)*6 + 6 + idx_shift) | |
| 539 | |||
| 540 | − | do concurrent( s = 1:size(output%val, dim=2), m = 1:output%shape(4) ) | |
| 541 | − | select case(output%indices(1)) | |
| 542 | case(3, 4) ! circular or reflection | ||
| 543 | − | step = merge(1, -1, output%indices(1) .eq. 3) | |
| 544 | − | do k = dest(1,3), dest(2,3) | |
| 545 | − | do j = dest(1,2), dest(2,2) | |
| 546 | − | do i = dest(1,1), dest(2,1) | |
| 547 | idx_out = i + (j-1) * output_h + & | ||
| 548 | (k-1) * output_h * output_w + & | ||
| 549 | − | (m - 1) * output_h * output_w * output_d | |
| 550 | idx_in = orig(1,1) + step * (i - dest(1,1)) + & | ||
| 551 | (orig(1,2) + step * (j - dest(1,2)) - 1) * input_h + & | ||
| 552 | (orig(1,3) + step * (k - dest(1,3)) - 1) * & | ||
| 553 | input_h * input_w + & | ||
| 554 | − | (m - 1) * input_h * input_w * input_d | |
| 555 | − | output%val(idx_out, s) = input%val(idx_in, s) | |
| 556 | end do | ||
| 557 | end do | ||
| 558 | end do | ||
| 559 | case(5) ! replication | ||
| 560 | idx_in = orig(1,1) + & | ||
| 561 | (orig(1,2) - 1) * input_h + & | ||
| 562 | (orig(1,3) - 1) * input_h * input_w + & | ||
| 563 | − | (m - 1) * input_h * input_w * input_d | |
| 564 | − | do k = dest(1,3), dest(2,3) | |
| 565 | − | do j = dest(1,2), dest(2,2) | |
| 566 | − | do i = dest(1,1), dest(2,1) | |
| 567 | idx_out = i + (j - 1) * output_h + & | ||
| 568 | (k - 1) * output_h * output_w + & | ||
| 569 | − | (m - 1) * output_h * output_w * output_d | |
| 570 | − | output%val(idx_out, s) = input%val(idx_in, s) | |
| 571 | end do | ||
| 572 | end do | ||
| 573 | end do | ||
| 574 | end select | ||
| 575 | end do | ||
| 576 | end do | ||
| 577 | |||
| 578 | − | end subroutine fill_corner_region_3d | |
| 579 | !------------------------------------------------------------------------------- | ||
| 580 | − | subroutine fill_edge_region_3d(input, output) | |
| 581 | !! Fill edge region for 3D padding | ||
| 582 | implicit none | ||
| 583 | |||
| 584 | ! Arguments | ||
| 585 | type(array_type), intent(in) :: input | ||
| 586 | type(array_type), intent(inout) :: output | ||
| 587 | |||
| 588 | ! Local variables | ||
| 589 | integer :: i, j, k, m, s, f, idim | ||
| 590 | integer :: step1, step2, step3, idx_in, idx_out, idx_shift | ||
| 591 | integer :: input_h, input_w, input_d | ||
| 592 | integer :: output_h, output_w, output_d | ||
| 593 | integer :: pad_h, pad_w, pad_d | ||
| 594 | integer, dimension(2,3) :: orig, dest | ||
| 595 | |||
| 596 | − | input_h = input%shape(1) | |
| 597 | − | input_w = input%shape(2) | |
| 598 | − | input_d = input%shape(3) | |
| 599 | − | output_h = output%shape(1) | |
| 600 | − | output_w = output%shape(2) | |
| 601 | − | output_d = output%shape(3) | |
| 602 | − | pad_h = output%indices(2) | |
| 603 | − | pad_w = output%indices(3) | |
| 604 | − | pad_d = output%indices(4) | |
| 605 | |||
| 606 | − | idx_shift = output%indices(5) * 6 | |
| 607 | − | do f = 1, output%indices(6) | |
| 608 | − | idim = output%indices(7 + output%indices(5) + f) | |
| 609 | − | orig(1:2,1) = output%adj_ja(1,(f-1)*6 + 1 + idx_shift:(f-1)*6 + 2 + idx_shift) | |
| 610 | − | orig(1:2,2) = output%adj_ja(1,(f-1)*6 + 3 + idx_shift:(f-1)*6 + 4 + idx_shift) | |
| 611 | − | orig(1:2,3) = output%adj_ja(1,(f-1)*6 + 5 + idx_shift:(f-1)*6 + 6 + idx_shift) | |
| 612 | − | dest(1:2,1) = output%adj_ja(2,(f-1)*6 + 1 + idx_shift:(f-1)*6 + 2 + idx_shift) | |
| 613 | − | dest(1:2,2) = output%adj_ja(2,(f-1)*6 + 3 + idx_shift:(f-1)*6 + 4 + idx_shift) | |
| 614 | − | dest(1:2,3) = output%adj_ja(2,(f-1)*6 + 5 + idx_shift:(f-1)*6 + 6 + idx_shift) | |
| 615 | |||
| 616 | − | do concurrent( s = 1:size(output%val, dim=2), m = 1:output%shape(4) ) | |
| 617 | − | select case(output%indices(1)) | |
| 618 | case(3, 4) ! circular or reflection | ||
| 619 | − | step1 = merge(-1, 1, output%indices(1) .eq. 4 .and. idim .eq. 1) | |
| 620 | − | step2 = merge(-1, 1, output%indices(1) .eq. 4 .and. idim .eq. 2) | |
| 621 | − | step3 = merge(-1, 1, output%indices(1) .eq. 4 .and. idim .eq. 3) | |
| 622 | − | do k = dest(1,3), dest(2,3) | |
| 623 | − | do j = dest(1,2), dest(2,2) | |
| 624 | − | do i = dest(1,1), dest(2,1) | |
| 625 | idx_out = i + (j-1) * output_h + & | ||
| 626 | (k-1) * output_h * output_w + & | ||
| 627 | − | (m - 1) * output_h * output_w * output_d | |
| 628 | idx_in = orig(1,1) + step1 * (i - dest(1,1)) + & | ||
| 629 | (orig(1,2) + step2 * (j - dest(1,2)) - 1) * & | ||
| 630 | input_h + & | ||
| 631 | (orig(1,3) + step3 * (k - dest(1,3)) - 1) * & | ||
| 632 | input_h * input_w + & | ||
| 633 | − | (m - 1) * input_h * input_w * input_d | |
| 634 | − | output%val(idx_out, s) = input%val(idx_in, s) | |
| 635 | end do | ||
| 636 | end do | ||
| 637 | end do | ||
| 638 | case(5) ! replication | ||
| 639 | − | select case(idim) | |
| 640 | case(1) ! Edge along dimension 1 | ||
| 641 | − | do i = dest(1,1), dest(2,1) | |
| 642 | idx_in = i - dest(1,1) + 1 + & | ||
| 643 | (orig(1,2) - 1) * input_h + & | ||
| 644 | (orig(1,3) - 1) * input_h * input_w + & | ||
| 645 | − | (m - 1) * input_h * input_w * input_d | |
| 646 | − | do k = dest(1,3), dest(2,3) | |
| 647 | − | do j = dest(1,2), dest(2,2) | |
| 648 | idx_out = i + (j - 1) * output_h + & | ||
| 649 | (k - 1) * output_h * output_w + & | ||
| 650 | − | (m - 1) * output_h * output_w * output_d | |
| 651 | − | output%val(idx_out, s) = input%val(idx_in, s) | |
| 652 | end do | ||
| 653 | end do | ||
| 654 | end do | ||
| 655 | case(2) ! Edge along dimension 2 | ||
| 656 | − | do j = dest(1,2), dest(2,2) | |
| 657 | idx_in = orig(1,1) + & | ||
| 658 | (j - dest(1,2)) * input_h + & | ||
| 659 | (orig(1,3) - 1) * input_h * input_w + & | ||
| 660 | − | (m - 1) * input_h * input_w * input_d | |
| 661 | − | do k = dest(1,3), dest(2,3) | |
| 662 | − | do i = dest(1,1), dest(2,1) | |
| 663 | idx_out = i + (j - 1) * output_h + & | ||
| 664 | (k - 1) * output_h * output_w + & | ||
| 665 | − | (m - 1) * output_h * output_w * output_d | |
| 666 | − | output%val(idx_out, s) = input%val(idx_in, s) | |
| 667 | end do | ||
| 668 | end do | ||
| 669 | end do | ||
| 670 | case(3) ! Edge along dimension 3 | ||
| 671 | − | do k = dest(1,3), dest(2,3) | |
| 672 | idx_in = orig(1,1) + & | ||
| 673 | (orig(1,2) - 1) * input_h + & | ||
| 674 | (k - dest(1,3)) * input_h * input_w + & | ||
| 675 | − | (m - 1) * input_h * input_w * input_d | |
| 676 | − | do j = dest(1,2), dest(2,2) | |
| 677 | − | do i = dest(1,1), dest(2,1) | |
| 678 | idx_out = i + (j - 1) * output_h + & | ||
| 679 | (k - 1) * output_h * output_w + & | ||
| 680 | − | (m - 1) * output_h * output_w * output_d | |
| 681 | − | output%val(idx_out, s) = input%val(idx_in, s) | |
| 682 | end do | ||
| 683 | end do | ||
| 684 | end do | ||
| 685 | end select | ||
| 686 | end select | ||
| 687 | end do | ||
| 688 | end do | ||
| 689 | |||
| 690 | − | end subroutine fill_edge_region_3d | |
| 691 | !------------------------------------------------------------------------------- | ||
| 692 | − | subroutine fill_face_region_3d(input, output) | |
| 693 | !! Fill face region for 3D padding | ||
| 694 | implicit none | ||
| 695 | |||
| 696 | ! Arguments | ||
| 697 | type(array_type), intent(in) :: input | ||
| 698 | type(array_type), intent(inout) :: output | ||
| 699 | |||
| 700 | ! Local variables | ||
| 701 | integer :: i, j, k, m, s, f, idim | ||
| 702 | integer :: step1, step2, step3, idx_in, idx_out | ||
| 703 | integer :: input_h, input_w, input_d | ||
| 704 | integer :: output_h, output_w, output_d | ||
| 705 | integer, dimension(2,3) :: orig, dest | ||
| 706 | |||
| 707 | − | input_h = input%shape(1) | |
| 708 | − | input_w = input%shape(2) | |
| 709 | − | input_d = input%shape(3) | |
| 710 | − | output_h = output%shape(1) | |
| 711 | − | output_w = output%shape(2) | |
| 712 | − | output_d = output%shape(3) | |
| 713 | |||
| 714 | − | do f = 1, output%indices(5) | |
| 715 | − | idim = output%indices(7 + f) | |
| 716 | − | orig(1:2,1) = output%adj_ja(1,(f-1)*6 + 1:(f-1)*6 + 2) | |
| 717 | − | orig(1:2,2) = output%adj_ja(1,(f-1)*6 + 3:(f-1)*6 + 4) | |
| 718 | − | orig(1:2,3) = output%adj_ja(1,(f-1)*6 + 5:(f-1)*6 + 6) | |
| 719 | − | dest(1:2,1) = output%adj_ja(2,(f-1)*6 + 1:(f-1)*6 + 2) | |
| 720 | − | dest(1:2,2) = output%adj_ja(2,(f-1)*6 + 3:(f-1)*6 + 4) | |
| 721 | − | dest(1:2,3) = output%adj_ja(2,(f-1)*6 + 5:(f-1)*6 + 6) | |
| 722 | |||
| 723 | − | do concurrent( s = 1:size(output%val, dim=2), m = 1:output%shape(4) ) | |
| 724 | − | select case(output%indices(1)) | |
| 725 | case(3, 4) ! circular or reflection | ||
| 726 | − | step1 = merge(-1, 1, output%indices(1) .eq. 4 .and. idim .eq. 1) | |
| 727 | − | step2 = merge(-1, 1, output%indices(1) .eq. 4 .and. idim .eq. 2) | |
| 728 | − | step3 = merge(-1, 1, output%indices(1) .eq. 4 .and. idim .eq. 3) | |
| 729 | − | do k = dest(1,3), dest(2,3) | |
| 730 | − | do j = dest(1,2), dest(2,2) | |
| 731 | − | do i = dest(1,1), dest(2,1) | |
| 732 | idx_out = i + (j-1) * output_h + & | ||
| 733 | (k-1) * output_h * output_w + & | ||
| 734 | − | (m - 1) * output_h * output_w * output_d | |
| 735 | idx_in = orig(1,1) + step1 * (i - dest(1,1)) + & | ||
| 736 | (orig(1,2) + step2 * (j - dest(1,2)) - 1) * & | ||
| 737 | input_h + & | ||
| 738 | (orig(1,3) + step3 * (k - dest(1,3)) - 1) * & | ||
| 739 | input_h * input_w + & | ||
| 740 | − | (m - 1) * input_h * input_w * input_d | |
| 741 | − | output%val(idx_out, s) = input%val(idx_in, s) | |
| 742 | end do | ||
| 743 | end do | ||
| 744 | end do | ||
| 745 | case(5) ! replication | ||
| 746 | − | select case(idim) | |
| 747 | case(1) ! Face perpendicular to dimension 1 | ||
| 748 | − | do k = dest(1,3), dest(2,3) | |
| 749 | − | do j = dest(1,2), dest(2,2) | |
| 750 | idx_in = orig(1,1) + & | ||
| 751 | (j - dest(1,2) + orig(1,2) - 1) * input_h + & | ||
| 752 | (k - dest(1,3) + orig(1,3) - 1) * input_h * input_w + & | ||
| 753 | − | (m - 1) * input_h * input_w * input_d | |
| 754 | − | do i = dest(1,1), dest(2,1) | |
| 755 | idx_out = i + (j - 1) * output_h + & | ||
| 756 | (k - 1) * output_h * output_w + & | ||
| 757 | − | (m - 1) * output_h * output_w * output_d | |
| 758 | − | output%val(idx_out, s) = input%val(idx_in, s) | |
| 759 | end do | ||
| 760 | end do | ||
| 761 | end do | ||
| 762 | case(2) ! Face perpendicular to dimension 2 | ||
| 763 | − | do k = dest(1,3), dest(2,3) | |
| 764 | − | do i = dest(1,1), dest(2,1) | |
| 765 | idx_in = i - dest(1,1) + orig(1,1) + & | ||
| 766 | (orig(1,2) - 1) * input_h + & | ||
| 767 | (k - dest(1,3) + orig(1,3) - 1) * input_h * input_w + & | ||
| 768 | − | (m - 1) * input_h * input_w * input_d | |
| 769 | − | do j = dest(1,2), dest(2,2) | |
| 770 | idx_out = i + (j - 1) * output_h + & | ||
| 771 | (k - 1) * output_h * output_w + & | ||
| 772 | − | (m - 1) * output_h * output_w * output_d | |
| 773 | − | output%val(idx_out, s) = input%val(idx_in, s) | |
| 774 | end do | ||
| 775 | end do | ||
| 776 | end do | ||
| 777 | case(3) ! Face perpendicular to dimension 3 | ||
| 778 | − | do j = dest(1,2), dest(2,2) | |
| 779 | − | do i = dest(1,1), dest(2,1) | |
| 780 | idx_in = i - dest(1,1) + orig(1,1) + & | ||
| 781 | (j - dest(1,2) + orig(1,2) - 1) * input_h + & | ||
| 782 | (orig(1,3) - 1) * input_h * input_w + & | ||
| 783 | − | (m - 1) * input_h * input_w * input_d | |
| 784 | − | do k = dest(1,3), dest(2,3) | |
| 785 | idx_out = i + (j - 1) * output_h + & | ||
| 786 | (k - 1) * output_h * output_w + & | ||
| 787 | − | (m - 1) * output_h * output_w * output_d | |
| 788 | − | output%val(idx_out, s) = input%val(idx_in, s) | |
| 789 | end do | ||
| 790 | end do | ||
| 791 | end do | ||
| 792 | end select | ||
| 793 | end select | ||
| 794 | end do | ||
| 795 | end do | ||
| 796 | |||
| 797 | − | end subroutine fill_face_region_3d | |
| 798 | !------------------------------------------------------------------------------- | ||
| 799 | − | pure subroutine accumulate_corner_gradients_3d_val(upstream_grad, output, & | |
| 800 | − | input_shape, indices, adj_ja) | |
| 801 | !! Accumulate corner gradients for 3D padding - raw array version | ||
| 802 | implicit none | ||
| 803 | |||
| 804 | ! Arguments | ||
| 805 | real(real32), dimension(:,:), intent(in) :: upstream_grad | ||
| 806 | real(real32), dimension(:,:), intent(inout) :: output | ||
| 807 | integer, dimension(5), intent(in) :: input_shape | ||
| 808 | integer, dimension(:), intent(in) :: indices | ||
| 809 | integer, dimension(:,:), intent(in) :: adj_ja | ||
| 810 | |||
| 811 | ! Local variables | ||
| 812 | integer :: i, j, k, m, s, f | ||
| 813 | integer :: step, idx_in, idx_out, idx_shift | ||
| 814 | integer :: input_h, input_w, input_d | ||
| 815 | integer :: output_h, output_w, output_d | ||
| 816 | integer, dimension(2,3) :: orig, dest | ||
| 817 | real(real32) :: grad_sum | ||
| 818 | |||
| 819 | − | input_h = input_shape(1) | |
| 820 | − | input_w = input_shape(2) | |
| 821 | − | input_d = input_shape(3) | |
| 822 | − | output_h = input_h + 2 * indices(2) | |
| 823 | − | output_w = input_w + 2 * indices(3) | |
| 824 | − | output_d = input_d + 2 * indices(4) | |
| 825 | |||
| 826 | − | if(indices(7) .eq. 0) return | |
| 827 | |||
| 828 | − | idx_shift = ( indices(5) + indices(6) ) * 6 | |
| 829 | |||
| 830 | − | select case(indices(1)) | |
| 831 | case(3, 4) ! circular or reflection | ||
| 832 | − | step = merge(1, -1, indices(1) .eq. 3) | |
| 833 | − | do f = 1, indices(7) | |
| 834 | − | orig(1:2,1) = adj_ja(1,(f-1)*6 + 1 + idx_shift:(f-1)*6 + 2 + idx_shift) | |
| 835 | − | orig(1:2,2) = adj_ja(1,(f-1)*6 + 3 + idx_shift:(f-1)*6 + 4 + idx_shift) | |
| 836 | − | orig(1:2,3) = adj_ja(1,(f-1)*6 + 5 + idx_shift:(f-1)*6 + 6 + idx_shift) | |
| 837 | − | dest(1:2,1) = adj_ja(2,(f-1)*6 + 1 + idx_shift:(f-1)*6 + 2 + idx_shift) | |
| 838 | − | dest(1:2,2) = adj_ja(2,(f-1)*6 + 3 + idx_shift:(f-1)*6 + 4 + idx_shift) | |
| 839 | − | dest(1:2,3) = adj_ja(2,(f-1)*6 + 5 + idx_shift:(f-1)*6 + 6 + idx_shift) | |
| 840 | |||
| 841 | − | do s = 1, input_shape(5) | |
| 842 | − | do m = 1, input_shape(4) | |
| 843 | − | do k = dest(1,3), dest(2,3) | |
| 844 | − | do j = dest(1,2), dest(2,2) | |
| 845 | − | do i = dest(1,1), dest(2,1) | |
| 846 | idx_out = i + (j-1) * output_h + & | ||
| 847 | (k-1) * output_h * output_w + & | ||
| 848 | − | (m - 1) * output_h * output_w * output_d | |
| 849 | idx_in = orig(1,1) + step * (i - dest(1,1)) + & | ||
| 850 | (orig(1,2) + step * (j - dest(1,2)) - 1) * & | ||
| 851 | input_h + & | ||
| 852 | (orig(1,3) + step * (k - dest(1,3)) - 1) * & | ||
| 853 | input_h * input_w + & | ||
| 854 | − | (m - 1) * input_h * input_w * input_d | |
| 855 | − | output(idx_in, s) = output(idx_in, s) + & | |
| 856 | − | upstream_grad(idx_out, s) | |
| 857 | end do | ||
| 858 | end do | ||
| 859 | end do | ||
| 860 | end do | ||
| 861 | end do | ||
| 862 | end do | ||
| 863 | case(5) ! replication | ||
| 864 | − | do f = 1, indices(7) | |
| 865 | − | orig(1:2,1) = adj_ja(1,(f-1)*6 + 1 + idx_shift:(f-1)*6 + 2 + idx_shift) | |
| 866 | − | orig(1:2,2) = adj_ja(1,(f-1)*6 + 3 + idx_shift:(f-1)*6 + 4 + idx_shift) | |
| 867 | − | orig(1:2,3) = adj_ja(1,(f-1)*6 + 5 + idx_shift:(f-1)*6 + 6 + idx_shift) | |
| 868 | − | dest(1:2,1) = adj_ja(2,(f-1)*6 + 1 + idx_shift:(f-1)*6 + 2 + idx_shift) | |
| 869 | − | dest(1:2,2) = adj_ja(2,(f-1)*6 + 3 + idx_shift:(f-1)*6 + 4 + idx_shift) | |
| 870 | − | dest(1:2,3) = adj_ja(2,(f-1)*6 + 5 + idx_shift:(f-1)*6 + 6 + idx_shift) | |
| 871 | |||
| 872 | − | do s = 1, input_shape(5) | |
| 873 | − | do m = 1, input_shape(4) | |
| 874 | − | grad_sum = 0._real32 | |
| 875 | − | do k = dest(1,3), dest(2,3) | |
| 876 | − | do j = dest(1,2), dest(2,2) | |
| 877 | − | do i = dest(1,1), dest(2,1) | |
| 878 | idx_out = i + (j-1) * output_h + & | ||
| 879 | (k-1) * output_h * output_w + & | ||
| 880 | − | (m - 1) * output_h * output_w * output_d | |
| 881 | − | grad_sum = grad_sum + upstream_grad(idx_out, s) | |
| 882 | end do | ||
| 883 | end do | ||
| 884 | end do | ||
| 885 | idx_in = orig(1,1) + (orig(1,2) - 1) * input_h + & | ||
| 886 | (orig(1,3) - 1) * input_h * input_w + & | ||
| 887 | − | (m - 1) * input_h * input_w * input_d | |
| 888 | − | output(idx_in, s) = output(idx_in, s) + grad_sum | |
| 889 | end do | ||
| 890 | end do | ||
| 891 | end do | ||
| 892 | end select | ||
| 893 | |||
| 894 | end subroutine accumulate_corner_gradients_3d_val | ||
| 895 | !------------------------------------------------------------------------------- | ||
| 896 | − | pure subroutine accumulate_edge_gradients_3d_val(upstream_grad, output, & | |
| 897 | − | input_shape, indices, adj_ja) | |
| 898 | !! Accumulate edge gradients for 3D padding - raw array version | ||
| 899 | implicit none | ||
| 900 | |||
| 901 | ! Arguments | ||
| 902 | real(real32), dimension(:,:), intent(in) :: upstream_grad | ||
| 903 | real(real32), dimension(:,:), intent(inout) :: output | ||
| 904 | integer, dimension(5), intent(in) :: input_shape | ||
| 905 | integer, dimension(:), intent(in) :: indices | ||
| 906 | integer, dimension(:,:), intent(in) :: adj_ja | ||
| 907 | |||
| 908 | ! Local variables | ||
| 909 | integer :: i, j, k, m, s, f, idim | ||
| 910 | integer :: step1, step2, step3, idx_in, idx_out, idx_shift | ||
| 911 | integer :: input_h, input_w, input_d | ||
| 912 | integer :: output_h, output_w, output_d | ||
| 913 | integer, dimension(2,3) :: orig, dest | ||
| 914 | real(real32) :: grad_sum | ||
| 915 | |||
| 916 | − | input_h = input_shape(1) | |
| 917 | − | input_w = input_shape(2) | |
| 918 | − | input_d = input_shape(3) | |
| 919 | − | output_h = input_h + 2 * indices(2) | |
| 920 | − | output_w = input_w + 2 * indices(3) | |
| 921 | − | output_d = input_d + 2 * indices(4) | |
| 922 | |||
| 923 | − | if(indices(6) .eq. 0) return | |
| 924 | |||
| 925 | − | idx_shift = indices(5) * 6 | |
| 926 | |||
| 927 | − | select case(indices(1)) | |
| 928 | case(3, 4) ! circular or reflection | ||
| 929 | − | do f = 1, indices(6) | |
| 930 | − | idim = indices(7 + indices(5) + f) | |
| 931 | − | orig(1:2,1) = adj_ja(1,(f-1)*6 + 1 + idx_shift:(f-1)*6 + 2 + idx_shift) | |
| 932 | − | orig(1:2,2) = adj_ja(1,(f-1)*6 + 3 + idx_shift:(f-1)*6 + 4 + idx_shift) | |
| 933 | − | orig(1:2,3) = adj_ja(1,(f-1)*6 + 5 + idx_shift:(f-1)*6 + 6 + idx_shift) | |
| 934 | − | dest(1:2,1) = adj_ja(2,(f-1)*6 + 1 + idx_shift:(f-1)*6 + 2 + idx_shift) | |
| 935 | − | dest(1:2,2) = adj_ja(2,(f-1)*6 + 3 + idx_shift:(f-1)*6 + 4 + idx_shift) | |
| 936 | − | dest(1:2,3) = adj_ja(2,(f-1)*6 + 5 + idx_shift:(f-1)*6 + 6 + idx_shift) | |
| 937 | |||
| 938 | − | step1 = merge(-1, 1, indices(1) .eq. 4 .and. idim .eq. 1) | |
| 939 | − | step2 = merge(-1, 1, indices(1) .eq. 4 .and. idim .eq. 2) | |
| 940 | − | step3 = merge(-1, 1, indices(1) .eq. 4 .and. idim .eq. 3) | |
| 941 | |||
| 942 | − | do s = 1, input_shape(5) | |
| 943 | − | do m = 1, input_shape(4) | |
| 944 | − | do k = dest(1,3), dest(2,3) | |
| 945 | − | do j = dest(1,2), dest(2,2) | |
| 946 | − | do i = dest(1,1), dest(2,1) | |
| 947 | idx_out = i + (j-1) * output_h + & | ||
| 948 | (k-1) * output_h * output_w + & | ||
| 949 | − | (m - 1) * output_h * output_w * output_d | |
| 950 | idx_in = orig(1,1) + step1 * (i - dest(1,1)) + & | ||
| 951 | (orig(1,2) + step2 * (j - dest(1,2)) - 1) * & | ||
| 952 | input_h + & | ||
| 953 | (orig(1,3) + step3 * (k - dest(1,3)) - 1) * & | ||
| 954 | input_h * input_w + & | ||
| 955 | − | (m - 1) * input_h * input_w * input_d | |
| 956 | − | output(idx_in, s) = output(idx_in, s) + & | |
| 957 | − | upstream_grad(idx_out, s) | |
| 958 | end do | ||
| 959 | end do | ||
| 960 | end do | ||
| 961 | end do | ||
| 962 | end do | ||
| 963 | end do | ||
| 964 | case(5) ! replication | ||
| 965 | − | do f = 1, indices(6) | |
| 966 | − | idim = indices(7 + indices(5) + f) | |
| 967 | − | orig(1:2,1) = adj_ja(1,(f-1)*6 + 1 + idx_shift:(f-1)*6 + 2 + idx_shift) | |
| 968 | − | orig(1:2,2) = adj_ja(1,(f-1)*6 + 3 + idx_shift:(f-1)*6 + 4 + idx_shift) | |
| 969 | − | orig(1:2,3) = adj_ja(1,(f-1)*6 + 5 + idx_shift:(f-1)*6 + 6 + idx_shift) | |
| 970 | − | dest(1:2,1) = adj_ja(2,(f-1)*6 + 1 + idx_shift:(f-1)*6 + 2 + idx_shift) | |
| 971 | − | dest(1:2,2) = adj_ja(2,(f-1)*6 + 3 + idx_shift:(f-1)*6 + 4 + idx_shift) | |
| 972 | − | dest(1:2,3) = adj_ja(2,(f-1)*6 + 5 + idx_shift:(f-1)*6 + 6 + idx_shift) | |
| 973 | |||
| 974 | − | select case(idim) | |
| 975 | case(1) ! Edge along dimension 1 | ||
| 976 | − | do s = 1, input_shape(5) | |
| 977 | − | do m = 1, input_shape(4) | |
| 978 | − | do i = dest(1,1), dest(2,1) | |
| 979 | idx_in = i - dest(1,1) + 1 + & | ||
| 980 | (orig(1,2) - 1) * input_h + & | ||
| 981 | (orig(1,3) - 1) * input_h * input_w + & | ||
| 982 | − | (m - 1) * input_h * input_w * input_d | |
| 983 | − | grad_sum = 0._real32 | |
| 984 | − | do k = dest(1,3), dest(2,3) | |
| 985 | − | do j = dest(1,2), dest(2,2) | |
| 986 | idx_out = i + (j - 1) * output_h + & | ||
| 987 | (k - 1) * output_h * output_w + & | ||
| 988 | − | (m - 1) * output_h * output_w * output_d | |
| 989 | − | grad_sum = grad_sum + upstream_grad(idx_out, s) | |
| 990 | end do | ||
| 991 | end do | ||
| 992 | − | output(idx_in, s) = output(idx_in, s) + grad_sum | |
| 993 | end do | ||
| 994 | end do | ||
| 995 | end do | ||
| 996 | case(2) ! Edge along dimension 2 | ||
| 997 | − | do s = 1, input_shape(5) | |
| 998 | − | do m = 1, input_shape(4) | |
| 999 | − | do j = dest(1,2), dest(2,2) | |
| 1000 | idx_in = orig(1,1) + & | ||
| 1001 | (j - dest(1,2)) * input_h + & | ||
| 1002 | (orig(1,3) - 1) * input_h * input_w + & | ||
| 1003 | − | (m - 1) * input_h * input_w * input_d | |
| 1004 | − | grad_sum = 0._real32 | |
| 1005 | − | do k = dest(1,3), dest(2,3) | |
| 1006 | − | do i = dest(1,1), dest(2,1) | |
| 1007 | idx_out = i + (j - 1) * output_h + & | ||
| 1008 | (k - 1) * output_h * output_w + & | ||
| 1009 | − | (m - 1) * output_h * output_w * output_d | |
| 1010 | − | grad_sum = grad_sum + upstream_grad(idx_out, s) | |
| 1011 | end do | ||
| 1012 | end do | ||
| 1013 | − | output(idx_in, s) = output(idx_in, s) + grad_sum | |
| 1014 | end do | ||
| 1015 | end do | ||
| 1016 | end do | ||
| 1017 | case(3) ! Edge along dimension 3 | ||
| 1018 | − | do s = 1, input_shape(5) | |
| 1019 | − | do m = 1, input_shape(4) | |
| 1020 | − | do k = dest(1,3), dest(2,3) | |
| 1021 | idx_in = orig(1,1) + & | ||
| 1022 | (orig(1,2) - 1) * input_h + & | ||
| 1023 | (k - dest(1,3)) * input_h * input_w + & | ||
| 1024 | − | (m - 1) * input_h * input_w * input_d | |
| 1025 | − | grad_sum = 0._real32 | |
| 1026 | − | do j = dest(1,2), dest(2,2) | |
| 1027 | − | do i = dest(1,1), dest(2,1) | |
| 1028 | idx_out = i + (j - 1) * output_h + & | ||
| 1029 | (k - 1) * output_h * output_w + & | ||
| 1030 | − | (m - 1) * output_h * output_w * output_d | |
| 1031 | − | grad_sum = grad_sum + upstream_grad(idx_out, s) | |
| 1032 | end do | ||
| 1033 | end do | ||
| 1034 | − | output(idx_in, s) = output(idx_in, s) + grad_sum | |
| 1035 | end do | ||
| 1036 | end do | ||
| 1037 | end do | ||
| 1038 | end select | ||
| 1039 | end do | ||
| 1040 | end select | ||
| 1041 | |||
| 1042 | end subroutine accumulate_edge_gradients_3d_val | ||
| 1043 | !------------------------------------------------------------------------------- | ||
| 1044 | − | pure subroutine accumulate_face_gradients_3d_val(upstream_grad, output, & | |
| 1045 | − | input_shape, indices, adj_ja) | |
| 1046 | !! Accumulate face gradients for 3D padding - raw array version | ||
| 1047 | implicit none | ||
| 1048 | |||
| 1049 | ! Arguments | ||
| 1050 | real(real32), dimension(:,:), intent(in) :: upstream_grad | ||
| 1051 | real(real32), dimension(:,:), intent(inout) :: output | ||
| 1052 | integer, dimension(5), intent(in) :: input_shape | ||
| 1053 | integer, dimension(:), intent(in) :: indices | ||
| 1054 | integer, dimension(:,:), intent(in) :: adj_ja | ||
| 1055 | |||
| 1056 | ! Local variables | ||
| 1057 | integer :: i, j, k, m, s, f, idim | ||
| 1058 | integer :: step1, step2, step3, idx_in, idx_out | ||
| 1059 | integer :: input_h, input_w, input_d | ||
| 1060 | integer :: output_h, output_w, output_d | ||
| 1061 | integer, dimension(2,3) :: orig, dest | ||
| 1062 | real(real32) :: grad_sum | ||
| 1063 | |||
| 1064 | − | input_h = input_shape(1) | |
| 1065 | − | input_w = input_shape(2) | |
| 1066 | − | input_d = input_shape(3) | |
| 1067 | − | output_h = input_h + 2 * indices(2) | |
| 1068 | − | output_w = input_w + 2 * indices(4) | |
| 1069 | − | output_d = input_d + 2 * indices(4) | |
| 1070 | |||
| 1071 | − | if(indices(5) .eq. 0) return | |
| 1072 | |||
| 1073 | − | select case(indices(1)) | |
| 1074 | case(3, 4) ! circular or reflection | ||
| 1075 | − | do f = 1, indices(5) | |
| 1076 | − | idim = indices(7 + f) | |
| 1077 | − | orig(1:2,1) = adj_ja(1,(f-1)*6 + 1:(f-1)*6 + 2) | |
| 1078 | − | orig(1:2,2) = adj_ja(1,(f-1)*6 + 3:(f-1)*6 + 4) | |
| 1079 | − | orig(1:2,3) = adj_ja(1,(f-1)*6 + 5:(f-1)*6 + 6) | |
| 1080 | − | dest(1:2,1) = adj_ja(2,(f-1)*6 + 1:(f-1)*6 + 2) | |
| 1081 | − | dest(1:2,2) = adj_ja(2,(f-1)*6 + 3:(f-1)*6 + 4) | |
| 1082 | − | dest(1:2,3) = adj_ja(2,(f-1)*6 + 5:(f-1)*6 + 6) | |
| 1083 | |||
| 1084 | − | step1 = merge(-1, 1, indices(1) .eq. 4 .and. idim .eq. 1) | |
| 1085 | − | step2 = merge(-1, 1, indices(1) .eq. 4 .and. idim .eq. 2) | |
| 1086 | − | step3 = merge(-1, 1, indices(1) .eq. 4 .and. idim .eq. 3) | |
| 1087 | |||
| 1088 | − | do s = 1, input_shape(5) | |
| 1089 | − | do m = 1, input_shape(4) | |
| 1090 | − | do k = dest(1,3), dest(2,3) | |
| 1091 | − | do j = dest(1,2), dest(2,2) | |
| 1092 | − | do i = dest(1,1), dest(2,1) | |
| 1093 | idx_out = i + (j-1) * output_h + & | ||
| 1094 | (k-1) * output_h * output_w + & | ||
| 1095 | − | (m - 1) * output_h * output_w * output_d | |
| 1096 | idx_in = orig(1,1) + step1 * (i - dest(1,1)) + & | ||
| 1097 | (orig(1,2) + step2 * (j - dest(1,2)) - 1) * & | ||
| 1098 | input_h + & | ||
| 1099 | (orig(1,3) + step3 * (k - dest(1,3)) - 1) * & | ||
| 1100 | input_h * input_w + & | ||
| 1101 | − | (m - 1) * input_h * input_w * input_d | |
| 1102 | − | output(idx_in, s) = output(idx_in, s) + & | |
| 1103 | − | upstream_grad(idx_out, s) | |
| 1104 | end do | ||
| 1105 | end do | ||
| 1106 | end do | ||
| 1107 | end do | ||
| 1108 | end do | ||
| 1109 | end do | ||
| 1110 | case(5) ! replication | ||
| 1111 | − | do f = 1, indices(5) | |
| 1112 | − | idim = indices(7 + f) | |
| 1113 | − | orig(1:2,1) = adj_ja(1,(f-1)*6 + 1:(f-1)*6 + 2) | |
| 1114 | − | orig(1:2,2) = adj_ja(1,(f-1)*6 + 3:(f-1)*6 + 4) | |
| 1115 | − | orig(1:2,3) = adj_ja(1,(f-1)*6 + 5:(f-1)*6 + 6) | |
| 1116 | − | dest(1:2,1) = adj_ja(2,(f-1)*6 + 1:(f-1)*6 + 2) | |
| 1117 | − | dest(1:2,2) = adj_ja(2,(f-1)*6 + 3:(f-1)*6 + 4) | |
| 1118 | − | dest(1:2,3) = adj_ja(2,(f-1)*6 + 5:(f-1)*6 + 6) | |
| 1119 | |||
| 1120 | − | select case(idim) | |
| 1121 | case(1) ! Face perpendicular to dimension 1 | ||
| 1122 | − | do s = 1, input_shape(5) | |
| 1123 | − | do m = 1, input_shape(4) | |
| 1124 | − | do k = dest(1,3), dest(2,3) | |
| 1125 | − | do j = dest(1,2), dest(2,2) | |
| 1126 | idx_in = orig(1,1) + & | ||
| 1127 | ( j - dest(1,2) ) * input_h + & | ||
| 1128 | ( k - dest(1,3) ) * input_h * input_w + & | ||
| 1129 | − | (m - 1) * input_h * input_w * input_d | |
| 1130 | − | grad_sum = 0._real32 | |
| 1131 | − | do i = dest(1,1), dest(2,1) | |
| 1132 | idx_out = i + (j-1) * output_h + & | ||
| 1133 | (k-1) * output_h * output_w + & | ||
| 1134 | − | (m - 1) * output_h * output_w * output_d | |
| 1135 | − | grad_sum = grad_sum + upstream_grad(idx_out, s) | |
| 1136 | end do | ||
| 1137 | − | output(idx_in, s) = output(idx_in, s) + grad_sum | |
| 1138 | end do | ||
| 1139 | end do | ||
| 1140 | end do | ||
| 1141 | end do | ||
| 1142 | case(2) ! Face perpendicular to dimension 2 | ||
| 1143 | − | do s = 1, input_shape(5) | |
| 1144 | − | do m = 1, input_shape(4) | |
| 1145 | − | do k = dest(1,3), dest(2,3) | |
| 1146 | − | do i = dest(1,1), dest(2,1) | |
| 1147 | idx_in = i - dest(1,1) + 1 + & | ||
| 1148 | ( k - dest(1,3) ) * input_h * input_w + & | ||
| 1149 | − | (m - 1) * input_h * input_w * input_d | |
| 1150 | − | grad_sum = 0._real32 | |
| 1151 | − | do j = dest(1,2), dest(2,2) | |
| 1152 | idx_out = i + (j-1) * output_h + & | ||
| 1153 | (k-1) * output_h * output_w + & | ||
| 1154 | − | (m - 1) * output_h * output_w * output_d | |
| 1155 | − | grad_sum = grad_sum + upstream_grad(idx_out, s) | |
| 1156 | end do | ||
| 1157 | − | output(idx_in, s) = output(idx_in, s) + grad_sum | |
| 1158 | end do | ||
| 1159 | end do | ||
| 1160 | end do | ||
| 1161 | end do | ||
| 1162 | case(3) ! Face perpendicular to dimension 3 | ||
| 1163 | − | do s = 1, input_shape(5) | |
| 1164 | − | do m = 1, input_shape(4) | |
| 1165 | − | do j = dest(1,2), dest(2,2) | |
| 1166 | − | do i = dest(1,1), dest(2,1) | |
| 1167 | idx_in = i - dest(1,1) + 1 + & | ||
| 1168 | ( j - dest(1,2) ) * input_h + & | ||
| 1169 | − | (m - 1) * input_h * input_w * input_d | |
| 1170 | − | grad_sum = 0._real32 | |
| 1171 | − | do k = dest(1,3), dest(2,3) | |
| 1172 | idx_out = i + (j-1) * output_h + & | ||
| 1173 | (k-1) * output_h * output_w + & | ||
| 1174 | − | (m - 1) * output_h * output_w * output_d | |
| 1175 | − | grad_sum = grad_sum + upstream_grad(idx_out, s) | |
| 1176 | end do | ||
| 1177 | − | output(idx_in, s) = output(idx_in, s) + grad_sum | |
| 1178 | end do | ||
| 1179 | end do | ||
| 1180 | end do | ||
| 1181 | end do | ||
| 1182 | end select | ||
| 1183 | end do | ||
| 1184 | end select | ||
| 1185 | |||
| 1186 | end subroutine accumulate_face_gradients_3d_val | ||
| 1187 | !############################################################################### | ||
| 1188 | |||
| 1189 | |||
| 1190 | !############################################################################### | ||
| 1191 | − | module function pad1d(input, facets, pad_size, imethod) result(output) | |
| 1192 | !! 1D padding operation | ||
| 1193 | implicit none | ||
| 1194 | |||
| 1195 | ! Arguments | ||
| 1196 | type(array_type), intent(in), target :: input | ||
| 1197 | type(facets_type), intent(in) :: facets | ||
| 1198 | integer, intent(in) :: pad_size | ||
| 1199 | integer, intent(in) :: imethod | ||
| 1200 | type(array_type), pointer :: output | ||
| 1201 | |||
| 1202 | ! Local variables | ||
| 1203 | integer :: i, m, s | ||
| 1204 | integer :: idx_in, idx_out | ||
| 1205 | integer :: input_size, output_size | ||
| 1206 | integer, dimension(3) :: output_shape | ||
| 1207 | |||
| 1208 | − | input_size = input%shape(1) | |
| 1209 | − | output_size = input_size + 2 * pad_size | |
| 1210 | |||
| 1211 | − | output_shape = [ output_size, input%shape(2), size(input%val, dim=2) ] | |
| 1212 | − | output => input%create_result(array_shape = output_shape) | |
| 1213 | |||
| 1214 | ! save the facet values to indices and adj_ja | ||
| 1215 | − | allocate(output%indices(2 + facets%num)) | |
| 1216 | − | output%indices(1) = imethod | |
| 1217 | − | output%indices(2) = pad_size | |
| 1218 | − | output%indices(3) = facets%num | |
| 1219 | − | allocate(output%adj_ja(2, 2 * facets%num)) | |
| 1220 | − | do i = 1, facets%num | |
| 1221 | − | output%adj_ja(1,(i-1)*2 + 1) = facets%orig_bound(1,1,i) | |
| 1222 | − | output%adj_ja(2,(i-1)*2 + 1) = facets%dest_bound(1,1,i) | |
| 1223 | − | output%adj_ja(1,(i-1)*2 + 2) = facets%orig_bound(2,1,i) | |
| 1224 | − | output%adj_ja(2,(i-1)*2 + 2) = facets%dest_bound(2,1,i) | |
| 1225 | end do | ||
| 1226 | |||
| 1227 | ! Initialise with pad_value | ||
| 1228 | − | output%val = 0._real32 | |
| 1229 | |||
| 1230 | ! Copy input into the correct location in output | ||
| 1231 | do concurrent( & | ||
| 1232 | s = 1:output_shape(3), & | ||
| 1233 | m = 1:output_shape(2), & | ||
| 1234 | − | i = 1:input_size) | |
| 1235 | − | idx_in = i + (m-1) * input_size | |
| 1236 | − | idx_out = i + pad_size + (m-1) * output_size | |
| 1237 | − | output%val(idx_out, s) = input%val(idx_in, s) | |
| 1238 | end do | ||
| 1239 | |||
| 1240 | − | if(output%indices(1) .ge. 3 .and. output%indices(1) .le. 5)then | |
| 1241 | − | call fill_edge_region_1d( input, output ) | |
| 1242 | end if | ||
| 1243 | |||
| 1244 | |||
| 1245 | − | output%get_partial_left => get_partial_pad1d | |
| 1246 | − | output%get_partial_left_val => get_partial_pad1d_val | |
| 1247 | − | if(input%requires_grad)then | |
| 1248 | − | output%requires_grad = .true. | |
| 1249 | − | output%is_forward = input%is_forward | |
| 1250 | − | output%operation = 'pad' | |
| 1251 | − | output%left_operand => input | |
| 1252 | end if | ||
| 1253 | |||
| 1254 | − | end function pad1d | |
| 1255 | !------------------------------------------------------------------------------- | ||
| 1256 | − | function get_partial_pad1d(this, upstream_grad) result(output) | |
| 1257 | !! Get the partial derivative for the pad1d operation | ||
| 1258 | implicit none | ||
| 1259 | |||
| 1260 | ! Arguments | ||
| 1261 | class(array_type), intent(inout) :: this | ||
| 1262 | type(array_type), intent(in) :: upstream_grad | ||
| 1263 | type(array_type) :: output | ||
| 1264 | |||
| 1265 | ! Local variables | ||
| 1266 | integer, dimension(3) :: input_shape | ||
| 1267 | |||
| 1268 | − | input_shape = [ this%left_operand%shape, size(this%val, dim=2) ] | |
| 1269 | − | call output%allocate(array_shape = input_shape) | |
| 1270 | − | output%indices = this%indices | |
| 1271 | − | output%adj_ja = this%adj_ja | |
| 1272 | |||
| 1273 | − | call this%get_partial_left_val(upstream_grad%val, output%val) | |
| 1274 | |||
| 1275 | − | end function get_partial_pad1d | |
| 1276 | !------------------------------------------------------------------------------- | ||
| 1277 | − | pure subroutine get_partial_pad1d_val(this, upstream_grad, output) | |
| 1278 | !! Get the partial derivative for the pad1d operation - raw array version | ||
| 1279 | implicit none | ||
| 1280 | |||
| 1281 | ! Arguments | ||
| 1282 | class(array_type), intent(in) :: this | ||
| 1283 | real(real32), dimension(:,:), intent(in) :: upstream_grad | ||
| 1284 | real(real32), dimension(:,:), intent(out) :: output | ||
| 1285 | |||
| 1286 | ! Local variables | ||
| 1287 | integer :: i, m, s | ||
| 1288 | integer :: idx_in, idx_out | ||
| 1289 | integer :: input_size, output_size | ||
| 1290 | integer :: num_samples, num_features | ||
| 1291 | integer, dimension(3) :: input_shape | ||
| 1292 | |||
| 1293 | − | input_shape = [ this%left_operand%shape, size(upstream_grad, dim=2) ] | |
| 1294 | − | num_samples = input_shape(3) | |
| 1295 | − | num_features = input_shape(2) | |
| 1296 | − | input_size = input_shape(1) | |
| 1297 | − | output_size = input_size + 2 * this%indices(2) | |
| 1298 | |||
| 1299 | − | output = 0._real32 | |
| 1300 | |||
| 1301 | ! Main gradient extraction | ||
| 1302 | do concurrent( & | ||
| 1303 | s = 1:num_samples, & | ||
| 1304 | m = 1:num_features, & | ||
| 1305 | − | i = 1:input_size) | |
| 1306 | − | idx_in = i + (m-1) * input_size | |
| 1307 | − | idx_out = i + this%indices(2) + (m-1) * output_size | |
| 1308 | − | output(idx_in, s) = upstream_grad(idx_out, s) | |
| 1309 | end do | ||
| 1310 | |||
| 1311 | ! Handle edge gradients for special padding modes | ||
| 1312 | − | if(this%indices(1) .ge. 3 .and. this%indices(1) .le. 5)then | |
| 1313 | call accumulate_edge_gradients_1d_val( & | ||
| 1314 | − | upstream_grad, output, input_shape, this%indices, this%adj_ja & | |
| 1315 | − | ) | |
| 1316 | end if | ||
| 1317 | |||
| 1318 | − | end subroutine get_partial_pad1d_val | |
| 1319 | !############################################################################### | ||
| 1320 | |||
| 1321 | |||
| 1322 | !############################################################################### | ||
| 1323 | − | module function pad2d(input, facets, pad_size, imethod) result(output) | |
| 1324 | !! 2D padding operation | ||
| 1325 | implicit none | ||
| 1326 | |||
| 1327 | ! Arguments | ||
| 1328 | type(array_type), intent(in), target :: input | ||
| 1329 | type(facets_type), dimension(2), intent(in) :: facets | ||
| 1330 | integer, dimension(2), intent(in) :: pad_size | ||
| 1331 | integer, intent(in) :: imethod | ||
| 1332 | type(array_type), pointer :: output | ||
| 1333 | |||
| 1334 | ! Local variables | ||
| 1335 | integer :: i, j, m, s | ||
| 1336 | integer :: idx_in, idx_out, idx_shift | ||
| 1337 | integer :: input_size_h, input_size_w, num_channels | ||
| 1338 | integer :: output_size_h, output_size_w | ||
| 1339 | integer, dimension(4) :: output_shape | ||
| 1340 | |||
| 1341 | − | input_size_h = input%shape(1) | |
| 1342 | − | input_size_w = input%shape(2) | |
| 1343 | − | num_channels = input%shape(3) | |
| 1344 | − | output_size_h = input_size_h + 2 * pad_size(1) | |
| 1345 | − | output_size_w = input_size_w + 2 * pad_size(2) | |
| 1346 | |||
| 1347 | output_shape = [ & | ||
| 1348 | output_size_h, output_size_w, num_channels, size(input%val, dim=2) & | ||
| 1349 | − | ] | |
| 1350 | − | output => input%create_result(array_shape = output_shape) | |
| 1351 | |||
| 1352 | ! save the facet values to indices and adj_ja | ||
| 1353 | − | allocate(output%indices(3 + 2 + sum( facets(:)%num ))) | |
| 1354 | − | output%indices(1) = imethod | |
| 1355 | − | output%indices(2) = pad_size(1) | |
| 1356 | − | output%indices(3) = pad_size(2) | |
| 1357 | − | output%indices(4) = facets(1)%num | |
| 1358 | − | output%indices(5) = facets(2)%num | |
| 1359 | − | output%indices(6:5 + facets(1)%num) = [(facets(1)%dim(i), i=1, facets(1)%num)] | |
| 1360 | − | output%indices(6 + facets(1)%num:5 + facets(1)%num + facets(2)%num) = & | |
| 1361 | − | [(facets(2)%dim(i), i=1, facets(2)%num)] | |
| 1362 | − | allocate(output%adj_ja(2, 4 * ( facets(1)%num + facets(2)%num ))) | |
| 1363 | ! Edges (1D faces) | ||
| 1364 | − | do i = 1, facets(1)%num | |
| 1365 | − | output%adj_ja(1,(i-1)*4 + 1) = facets(1)%orig_bound(1,1,i) | |
| 1366 | − | output%adj_ja(2,(i-1)*4 + 1) = facets(1)%dest_bound(1,1,i) | |
| 1367 | − | output%adj_ja(1,(i-1)*4 + 2) = facets(1)%orig_bound(2,1,i) | |
| 1368 | − | output%adj_ja(2,(i-1)*4 + 2) = facets(1)%dest_bound(2,1,i) | |
| 1369 | − | output%adj_ja(1,(i-1)*4 + 3) = facets(1)%orig_bound(1,2,i) | |
| 1370 | − | output%adj_ja(2,(i-1)*4 + 3) = facets(1)%dest_bound(1,2,i) | |
| 1371 | − | output%adj_ja(1,(i-1)*4 + 4) = facets(1)%orig_bound(2,2,i) | |
| 1372 | − | output%adj_ja(2,(i-1)*4 + 4) = facets(1)%dest_bound(2,2,i) | |
| 1373 | end do | ||
| 1374 | − | idx_shift = facets(1)%num * 4 | |
| 1375 | ! Corners (2D edges) | ||
| 1376 | − | do i = 1, facets(2)%num | |
| 1377 | − | output%adj_ja(1,(i-1)*4 + 1 + idx_shift) = facets(2)%orig_bound(1,1,i) | |
| 1378 | − | output%adj_ja(2,(i-1)*4 + 1 + idx_shift) = facets(2)%dest_bound(1,1,i) | |
| 1379 | − | output%adj_ja(1,(i-1)*4 + 2 + idx_shift) = facets(2)%orig_bound(2,1,i) | |
| 1380 | − | output%adj_ja(2,(i-1)*4 + 2 + idx_shift) = facets(2)%dest_bound(2,1,i) | |
| 1381 | − | output%adj_ja(1,(i-1)*4 + 3 + idx_shift) = facets(2)%orig_bound(1,2,i) | |
| 1382 | − | output%adj_ja(2,(i-1)*4 + 3 + idx_shift) = facets(2)%dest_bound(1,2,i) | |
| 1383 | − | output%adj_ja(1,(i-1)*4 + 4 + idx_shift) = facets(2)%orig_bound(2,2,i) | |
| 1384 | − | output%adj_ja(2,(i-1)*4 + 4 + idx_shift) = facets(2)%dest_bound(2,2,i) | |
| 1385 | end do | ||
| 1386 | |||
| 1387 | ! Initialise with zero | ||
| 1388 | − | output%val = 0._real32 | |
| 1389 | |||
| 1390 | ! Copy input into the correct location in output | ||
| 1391 | do concurrent( & | ||
| 1392 | s = 1:output_shape(4), & | ||
| 1393 | m = 1:num_channels, & | ||
| 1394 | j = 1:input_size_w, & | ||
| 1395 | − | i = 1:input_size_h) | |
| 1396 | − | idx_in = i + (j-1) * input_size_h + (m-1) * input_size_h * input_size_w | |
| 1397 | idx_out = (i + pad_size(1)) + (j + pad_size(2) - 1) * output_size_h + & | ||
| 1398 | − | (m-1) * output_size_h * output_size_w | |
| 1399 | − | output%val(idx_out, s) = input%val(idx_in, s) | |
| 1400 | end do | ||
| 1401 | |||
| 1402 | − | if(output%indices(1) .ge. 3 .and. output%indices(1) .le. 5)then | |
| 1403 | − | call fill_corner_region_2d( input, output ) | |
| 1404 | − | call fill_edge_region_2d( input, output ) | |
| 1405 | end if | ||
| 1406 | |||
| 1407 | − | output%get_partial_left => get_partial_pad2d | |
| 1408 | − | output%get_partial_left_val => get_partial_pad2d_val | |
| 1409 | − | if(input%requires_grad)then | |
| 1410 | − | output%requires_grad = .true. | |
| 1411 | − | output%is_forward = input%is_forward | |
| 1412 | − | output%operation = 'pad' | |
| 1413 | − | output%left_operand => input | |
| 1414 | end if | ||
| 1415 | |||
| 1416 | − | end function pad2d | |
| 1417 | !------------------------------------------------------------------------------- | ||
| 1418 | − | function get_partial_pad2d(this, upstream_grad) result(output) | |
| 1419 | !! Get the partial derivative for the pad2d operation | ||
| 1420 | implicit none | ||
| 1421 | |||
| 1422 | ! Arguments | ||
| 1423 | class(array_type), intent(inout) :: this | ||
| 1424 | type(array_type), intent(in) :: upstream_grad | ||
| 1425 | type(array_type) :: output | ||
| 1426 | |||
| 1427 | ! Local variables | ||
| 1428 | integer, dimension(4) :: input_shape | ||
| 1429 | |||
| 1430 | − | input_shape = [ this%left_operand%shape, size(this%val, dim=2) ] | |
| 1431 | − | call output%allocate(array_shape = input_shape) | |
| 1432 | − | output%indices = this%indices | |
| 1433 | − | output%adj_ja = this%adj_ja | |
| 1434 | |||
| 1435 | − | call this%get_partial_left_val(upstream_grad%val, output%val) | |
| 1436 | |||
| 1437 | − | end function get_partial_pad2d | |
| 1438 | !------------------------------------------------------------------------------- | ||
| 1439 | − | pure subroutine get_partial_pad2d_val(this, upstream_grad, output) | |
| 1440 | !! Get the partial derivative for the pad2d operation - raw array version | ||
| 1441 | implicit none | ||
| 1442 | |||
| 1443 | ! Arguments | ||
| 1444 | class(array_type), intent(in) :: this | ||
| 1445 | real(real32), dimension(:,:), intent(in) :: upstream_grad | ||
| 1446 | real(real32), dimension(:,:), intent(out) :: output | ||
| 1447 | |||
| 1448 | ! Local variables | ||
| 1449 | integer :: i, j, m, s | ||
| 1450 | integer :: idx_in, idx_out | ||
| 1451 | integer :: input_size_h, input_size_w, num_channels | ||
| 1452 | integer :: output_size_h, output_size_w | ||
| 1453 | integer :: num_samples | ||
| 1454 | integer, dimension(4) :: input_shape | ||
| 1455 | |||
| 1456 | − | input_shape = [ this%left_operand%shape, size(upstream_grad, dim=2) ] | |
| 1457 | − | num_samples = input_shape(4) | |
| 1458 | − | input_size_h = input_shape(1) | |
| 1459 | − | input_size_w = input_shape(2) | |
| 1460 | − | num_channels = input_shape(3) | |
| 1461 | − | output_size_h = input_size_h + 2 * this%indices(2) | |
| 1462 | − | output_size_w = input_size_w + 2 * this%indices(3) | |
| 1463 | |||
| 1464 | − | output = 0._real32 | |
| 1465 | |||
| 1466 | ! Main gradient extraction | ||
| 1467 | do concurrent( & | ||
| 1468 | s = 1:num_samples, & | ||
| 1469 | m = 1:num_channels, & | ||
| 1470 | j = 1:input_size_w, & | ||
| 1471 | − | i = 1:input_size_h) | |
| 1472 | − | idx_in = i + (j-1) * input_size_h + (m-1) * input_size_h * input_size_w | |
| 1473 | − | idx_out = (i + this%indices(2)) + & | |
| 1474 | − | (j + this%indices(3) - 1) * output_size_h + & | |
| 1475 | − | (m-1) * output_size_h * output_size_w | |
| 1476 | − | output(idx_in, s) = upstream_grad(idx_out, s) | |
| 1477 | end do | ||
| 1478 | |||
| 1479 | ! Handle corner and edge gradients for special padding modes | ||
| 1480 | − | if(this%indices(1) .ge. 3 .and. this%indices(1) .le. 5)then | |
| 1481 | call accumulate_corner_gradients_2d_val( & | ||
| 1482 | − | upstream_grad, output, input_shape, this%indices, this%adj_ja & | |
| 1483 | − | ) | |
| 1484 | call accumulate_edge_gradients_2d_val( & | ||
| 1485 | − | upstream_grad, output, input_shape, this%indices, this%adj_ja & | |
| 1486 | − | ) | |
| 1487 | end if | ||
| 1488 | |||
| 1489 | − | end subroutine get_partial_pad2d_val | |
| 1490 | !############################################################################### | ||
| 1491 | |||
| 1492 | |||
| 1493 | !############################################################################### | ||
| 1494 | − | module function pad3d(input, facets, pad_size, imethod) result(output) | |
| 1495 | !! 3D padding operation | ||
| 1496 | implicit none | ||
| 1497 | |||
| 1498 | ! Arguments | ||
| 1499 | type(array_type), intent(in), target :: input | ||
| 1500 | type(facets_type), dimension(3), intent(in) :: facets | ||
| 1501 | integer, dimension(3), intent(in) :: pad_size | ||
| 1502 | integer, intent(in) :: imethod | ||
| 1503 | type(array_type), pointer :: output | ||
| 1504 | |||
| 1505 | ! Local variables | ||
| 1506 | integer :: i, j, k, m, s | ||
| 1507 | integer :: idx_in, idx_out, idx_shift | ||
| 1508 | integer :: input_size_h, input_size_w, input_size_d, num_channels | ||
| 1509 | integer :: output_size_h, output_size_w, output_size_d | ||
| 1510 | integer, dimension(5) :: output_shape | ||
| 1511 | |||
| 1512 | − | input_size_h = input%shape(1) | |
| 1513 | − | input_size_w = input%shape(2) | |
| 1514 | − | input_size_d = input%shape(3) | |
| 1515 | − | num_channels = input%shape(4) | |
| 1516 | − | output_size_h = input_size_h + 2 * pad_size(1) | |
| 1517 | − | output_size_w = input_size_w + 2 * pad_size(2) | |
| 1518 | − | output_size_d = input_size_d + 2 * pad_size(3) | |
| 1519 | |||
| 1520 | output_shape = [ output_size_h, output_size_w, output_size_d, num_channels, & | ||
| 1521 | − | size(input%val, dim=2) ] | |
| 1522 | − | output => input%create_result(array_shape = output_shape) | |
| 1523 | |||
| 1524 | ! save the facet values to indices and adj_ja | ||
| 1525 | − | allocate(output%indices(4 + 3 + sum( facets(:)%num ))) | |
| 1526 | − | output%indices(1) = imethod | |
| 1527 | − | output%indices(2) = pad_size(1) | |
| 1528 | − | output%indices(3) = pad_size(2) | |
| 1529 | − | output%indices(4) = pad_size(3) | |
| 1530 | − | output%indices(5) = facets(1)%num | |
| 1531 | − | output%indices(6) = facets(2)%num | |
| 1532 | − | output%indices(7) = facets(3)%num | |
| 1533 | − | output%indices(8:7 + facets(1)%num) = [(facets(1)%dim(i), i=1, facets(1)%num)] | |
| 1534 | − | output%indices(8 + facets(1)%num:7 + facets(1)%num + facets(2)%num) = & | |
| 1535 | − | [(facets(2)%dim(i), i=1, facets(2)%num)] | |
| 1536 | − | output%indices(8 + facets(1)%num + facets(2)%num:7 + & | |
| 1537 | facets(1)%num + facets(2)%num + facets(3)%num) = & | ||
| 1538 | − | [(facets(3)%dim(i), i=1, facets(3)%num)] | |
| 1539 | − | allocate(output%adj_ja(2, 6 * (facets(1)%num + facets(2)%num + facets(3)%num))) | |
| 1540 | ! Edges (1D edges) | ||
| 1541 | − | do i = 1, facets(1)%num | |
| 1542 | − | output%adj_ja(1,(i-1)*6 + 1 : (i-1)*6 + 2) = facets(1)%orig_bound(1:2,1,i) | |
| 1543 | − | output%adj_ja(1,(i-1)*6 + 3 : (i-1)*6 + 4) = facets(1)%orig_bound(1:2,2,i) | |
| 1544 | − | output%adj_ja(1,(i-1)*6 + 5 : (i-1)*6 + 6) = facets(1)%orig_bound(1:2,3,i) | |
| 1545 | − | output%adj_ja(2,(i-1)*6 + 1 : (i-1)*6 + 2) = facets(1)%dest_bound(1:2,1,i) | |
| 1546 | − | output%adj_ja(2,(i-1)*6 + 3 : (i-1)*6 + 4) = facets(1)%dest_bound(1:2,2,i) | |
| 1547 | − | output%adj_ja(2,(i-1)*6 + 5 : (i-1)*6 + 6) = facets(1)%dest_bound(1:2,3,i) | |
| 1548 | end do | ||
| 1549 | − | idx_shift = facets(1)%num * 6 | |
| 1550 | ! Faces (2D faces) | ||
| 1551 | − | do i = 1, facets(2)%num | |
| 1552 | − | output%adj_ja(1,(i-1)*6 + 1 + idx_shift : (i-1)*6 + 2 + idx_shift) = & | |
| 1553 | − | facets(2)%orig_bound(1:2,1,i) | |
| 1554 | − | output%adj_ja(1,(i-1)*6 + 3 + idx_shift : (i-1)*6 + 4 + idx_shift) = & | |
| 1555 | − | facets(2)%orig_bound(1:2,2,i) | |
| 1556 | − | output%adj_ja(1,(i-1)*6 + 5 + idx_shift : (i-1)*6 + 6 + idx_shift) = & | |
| 1557 | − | facets(2)%orig_bound(1:2,3,i) | |
| 1558 | − | output%adj_ja(2,(i-1)*6 + 1 + idx_shift : (i-1)*6 + 2 + idx_shift) = & | |
| 1559 | − | facets(2)%dest_bound(1:2,1,i) | |
| 1560 | − | output%adj_ja(2,(i-1)*6 + 3 + idx_shift : (i-1)*6 + 4 + idx_shift) = & | |
| 1561 | − | facets(2)%dest_bound(1:2,2,i) | |
| 1562 | − | output%adj_ja(2,(i-1)*6 + 5 + idx_shift : (i-1)*6 + 6 + idx_shift) = & | |
| 1563 | − | facets(2)%dest_bound(1:2,3,i) | |
| 1564 | end do | ||
| 1565 | − | idx_shift = idx_shift + facets(2)%num * 6 | |
| 1566 | ! Corners (3D corners) | ||
| 1567 | − | do i = 1, facets(3)%num | |
| 1568 | − | output%adj_ja(1,(i-1)*6 + 1 + idx_shift : (i-1)*6 + 2 + idx_shift) = & | |
| 1569 | − | facets(3)%orig_bound(1:2,1,i) | |
| 1570 | − | output%adj_ja(1,(i-1)*6 + 3 + idx_shift : (i-1)*6 + 4 + idx_shift) = & | |
| 1571 | − | facets(3)%orig_bound(1:2,2,i) | |
| 1572 | − | output%adj_ja(1,(i-1)*6 + 5 + idx_shift : (i-1)*6 + 6 + idx_shift) = & | |
| 1573 | − | facets(3)%orig_bound(1:2,3,i) | |
| 1574 | − | output%adj_ja(2,(i-1)*6 + 1 + idx_shift : (i-1)*6 + 2 + idx_shift) = & | |
| 1575 | − | facets(3)%dest_bound(1:2,1,i) | |
| 1576 | − | output%adj_ja(2,(i-1)*6 + 3 + idx_shift : (i-1)*6 + 4 + idx_shift) = & | |
| 1577 | − | facets(3)%dest_bound(1:2,2,i) | |
| 1578 | − | output%adj_ja(2,(i-1)*6 + 5 + idx_shift : (i-1)*6 + 6 + idx_shift) = & | |
| 1579 | − | facets(3)%dest_bound(1:2,3,i) | |
| 1580 | end do | ||
| 1581 | |||
| 1582 | ! Initialise with zero | ||
| 1583 | − | output%val = 0._real32 | |
| 1584 | |||
| 1585 | ! Copy input into the correct location in output | ||
| 1586 | do concurrent( & | ||
| 1587 | s = 1:output_shape(5), & | ||
| 1588 | m = 1:num_channels, & | ||
| 1589 | k = 1:input_size_d, & | ||
| 1590 | j = 1:input_size_w, & | ||
| 1591 | − | i = 1:input_size_h) | |
| 1592 | idx_in = i + (j-1) * input_size_h + (k-1) * input_size_h * input_size_w + & | ||
| 1593 | − | (m-1) * input_size_h * input_size_w * input_size_d | |
| 1594 | idx_out = (i + pad_size(1)) + & | ||
| 1595 | (j + pad_size(2) - 1) * output_size_h + & | ||
| 1596 | (k + pad_size(3) - 1) * output_size_h * output_size_w + & | ||
| 1597 | − | (m-1) * output_size_h * output_size_w * output_size_d | |
| 1598 | − | output%val(idx_out, s) = input%val(idx_in, s) | |
| 1599 | end do | ||
| 1600 | |||
| 1601 | − | if(output%indices(1) .ge. 3 .and. output%indices(1) .le. 5)then | |
| 1602 | − | call fill_corner_region_3d( input, output ) | |
| 1603 | − | call fill_edge_region_3d( input, output ) | |
| 1604 | − | call fill_face_region_3d( input, output ) | |
| 1605 | end if | ||
| 1606 | |||
| 1607 | − | output%get_partial_left => get_partial_pad3d | |
| 1608 | − | output%get_partial_left_val => get_partial_pad3d_val | |
| 1609 | − | if(input%requires_grad)then | |
| 1610 | − | output%requires_grad = .true. | |
| 1611 | − | output%is_forward = input%is_forward | |
| 1612 | − | output%operation = 'pad' | |
| 1613 | − | output%left_operand => input | |
| 1614 | end if | ||
| 1615 | |||
| 1616 | − | end function pad3d | |
| 1617 | !------------------------------------------------------------------------------- | ||
| 1618 | − | function get_partial_pad3d(this, upstream_grad) result(output) | |
| 1619 | !! Get the partial derivative for the pad3d operation | ||
| 1620 | implicit none | ||
| 1621 | |||
| 1622 | ! Arguments | ||
| 1623 | class(array_type), intent(inout) :: this | ||
| 1624 | type(array_type), intent(in) :: upstream_grad | ||
| 1625 | type(array_type) :: output | ||
| 1626 | |||
| 1627 | ! Local variables | ||
| 1628 | integer, dimension(5) :: input_shape | ||
| 1629 | |||
| 1630 | − | input_shape = [ this%left_operand%shape, size(this%val, dim=2) ] | |
| 1631 | − | call output%allocate(array_shape = input_shape) | |
| 1632 | − | output%indices = this%indices | |
| 1633 | − | output%adj_ja = this%adj_ja | |
| 1634 | |||
| 1635 | − | call this%get_partial_left_val(upstream_grad%val, output%val) | |
| 1636 | |||
| 1637 | − | end function get_partial_pad3d | |
| 1638 | !------------------------------------------------------------------------------- | ||
| 1639 | − | pure subroutine get_partial_pad3d_val(this, upstream_grad, output) | |
| 1640 | !! Get the partial derivative for the pad3d operation - raw array version | ||
| 1641 | implicit none | ||
| 1642 | |||
| 1643 | ! Arguments | ||
| 1644 | class(array_type), intent(in) :: this | ||
| 1645 | real(real32), dimension(:,:), intent(in) :: upstream_grad | ||
| 1646 | real(real32), dimension(:,:), intent(out) :: output | ||
| 1647 | |||
| 1648 | ! Local variables | ||
| 1649 | integer :: i, j, k, m, s | ||
| 1650 | integer :: idx_in, idx_out | ||
| 1651 | integer :: input_size_h, input_size_w, input_size_d, num_channels | ||
| 1652 | integer :: output_size_h, output_size_w, output_size_d | ||
| 1653 | integer :: num_samples | ||
| 1654 | integer, dimension(5) :: input_shape | ||
| 1655 | |||
| 1656 | − | input_shape = [ this%left_operand%shape, size(upstream_grad, dim=2) ] | |
| 1657 | − | num_samples = input_shape(5) | |
| 1658 | − | input_size_h = input_shape(1) | |
| 1659 | − | input_size_w = input_shape(2) | |
| 1660 | − | input_size_d = input_shape(3) | |
| 1661 | − | num_channels = input_shape(4) | |
| 1662 | − | output_size_h = input_size_h + 2 * this%indices(2) | |
| 1663 | − | output_size_w = input_size_w + 2 * this%indices(3) | |
| 1664 | − | output_size_d = input_size_d + 2 * this%indices(4) | |
| 1665 | |||
| 1666 | − | output = 0._real32 | |
| 1667 | |||
| 1668 | ! Main gradient extraction | ||
| 1669 | do concurrent( & | ||
| 1670 | s = 1:num_samples, & | ||
| 1671 | m = 1:num_channels, & | ||
| 1672 | k = 1:input_size_d, & | ||
| 1673 | j = 1:input_size_w, & | ||
| 1674 | − | i = 1:input_size_h) | |
| 1675 | idx_in = i + (j-1) * input_size_h + & | ||
| 1676 | (k-1) * input_size_h * input_size_w + & | ||
| 1677 | − | (m-1) * input_size_h * input_size_w * input_size_d | |
| 1678 | − | idx_out = (i + this%indices(2)) + & | |
| 1679 | − | (j + this%indices(3) - 1) * output_size_h + & | |
| 1680 | − | (k + this%indices(4) - 1) * output_size_h * output_size_w + & | |
| 1681 | − | (m-1) * output_size_h * output_size_w * output_size_d | |
| 1682 | − | output(idx_in, s) = upstream_grad(idx_out, s) | |
| 1683 | end do | ||
| 1684 | |||
| 1685 | ! Handle corner, edge, and face gradients for special padding modes | ||
| 1686 | − | if(this%indices(1) .ge. 3 .and. this%indices(1) .le. 5)then | |
| 1687 | call accumulate_corner_gradients_3d_val( & | ||
| 1688 | − | upstream_grad, output, input_shape, this%indices, this%adj_ja & | |
| 1689 | − | ) | |
| 1690 | call accumulate_edge_gradients_3d_val( & | ||
| 1691 | − | upstream_grad, output, input_shape, this%indices, this%adj_ja & | |
| 1692 | − | ) | |
| 1693 | call accumulate_face_gradients_3d_val( & | ||
| 1694 | − | upstream_grad, output, input_shape, this%indices, this%adj_ja & | |
| 1695 | − | ) | |
| 1696 | end if | ||
| 1697 | |||
| 1698 | − | end subroutine get_partial_pad3d_val | |
| 1699 | !############################################################################### | ||
| 1700 | |||
| 1701 | end submodule athena__diffstruc_extd_submodule_pad | ||
| 1702 |