| Line | Branch | Exec | Source |
|---|---|---|---|
| 1 | module athena__batchnorm2d_layer | ||
| 2 | !! Module containing implementation of 2D batch normalisation layer | ||
| 3 | !! | ||
| 4 | !! This module implements batch normalisation for 2D convolutional layers, | ||
| 5 | !! normalizing activations across the batch dimension. | ||
| 6 | !! | ||
| 7 | !! Mathematical operation (training): | ||
| 8 | !! \[ \mu_\mathcal{B} = \frac{1}{m}\sum_{i=1}^{m} x_i \] | ||
| 9 | !! \[ \sigma^2_\mathcal{B} = \frac{1}{m}\sum_{i=1}^{m} (x_i - \mu_\mathcal{B})^2 \] | ||
| 10 | !! \[ \hat{x}_i = \frac{x_i - \mu_\mathcal{B}}{\sqrt{\sigma^2_\mathcal{B} + \epsilon}} \] | ||
| 11 | !! \[ y_i = \gamma \hat{x}_i + \beta \] | ||
| 12 | !! | ||
| 13 | !! where \(\gamma, \beta\) are learnable parameters, \(\epsilon\) is stability constant | ||
| 14 | !! | ||
| 15 | !! Inference: uses running statistics | ||
| 16 | !! \(\mu_{\text{running}}, \sigma^2_{\text{running}}\) from training | ||
| 17 | !! | ||
| 18 | !! Benefits: Reduces internal covariate shift, enables higher learning rates, | ||
| 19 | !! acts as regularisation, reduces dependence on initialisation | ||
| 20 | !! Reference: Ioffe & Szegedy (2015), ICML | ||
| 21 | use coreutils, only: real32, stop_program, print_warning | ||
| 22 | use athena__base_layer, only: batch_layer_type, base_layer_type | ||
| 23 | use athena__misc_types, only: base_init_type, & | ||
| 24 | onnx_node_type, onnx_initialiser_type, onnx_tensor_type | ||
| 25 | use diffstruc, only: array_type | ||
| 26 | use athena__diffstruc_extd, only: batchnorm_array_type, & | ||
| 27 | batchnorm, batchnorm_inference | ||
| 28 | implicit none | ||
| 29 | |||
| 30 | |||
| 31 | private | ||
| 32 | |||
| 33 | public :: batchnorm2d_layer_type | ||
| 34 | public :: read_batchnorm2d_layer | ||
| 35 | |||
| 36 | |||
| 37 | type, extends(batch_layer_type) :: batchnorm2d_layer_type | ||
| 38 | !! Type for 2D batch normalisation layer with overloaded procedures | ||
| 39 | contains | ||
| 40 | procedure, pass(this) :: set_hyperparams => set_hyperparams_batchnorm2d | ||
| 41 | !! Set hyperparameters for 2D batch normalisation layer | ||
| 42 | procedure, pass(this) :: read => read_batchnorm2d | ||
| 43 | !! Read 2D batch normalisation layer from file | ||
| 44 | |||
| 45 | procedure, pass(this) :: forward => forward_batchnorm2d | ||
| 46 | !! Forward propagation derived type handler | ||
| 47 | |||
| 48 | final :: finalise_batchnorm2d | ||
| 49 | !! Finalise 2D batch normalisation layer | ||
| 50 | end type batchnorm2d_layer_type | ||
| 51 | |||
| 52 | interface batchnorm2d_layer_type | ||
| 53 | !! Interface for setting up the 2D batch normalisation layer | ||
| 54 | module function layer_setup( & | ||
| 55 | input_shape, & | ||
| 56 | momentum, epsilon, & | ||
| 57 | gamma_init_mean, gamma_init_std, & | ||
| 58 | beta_init_mean, beta_init_std, & | ||
| 59 | gamma_initialiser, beta_initialiser, & | ||
| 60 | moving_mean_initialiser, moving_variance_initialiser, & | ||
| 61 | verbose & | ||
| 62 | ) result(layer) | ||
| 63 | !! Set up the 2D batch normalisation layer | ||
| 64 | integer, dimension(:), optional, intent(in) :: input_shape | ||
| 65 | !! Input shape | ||
| 66 | real(real32), optional, intent(in) :: momentum, epsilon | ||
| 67 | !! Momentum and epsilon | ||
| 68 | real(real32), optional, intent(in) :: gamma_init_mean, gamma_init_std | ||
| 69 | !! Gamma initialisation mean and standard deviation | ||
| 70 | real(real32), optional, intent(in) :: beta_init_mean, beta_init_std | ||
| 71 | !! Beta initialisation mean and standard deviation | ||
| 72 | class(*), optional, intent(in) :: & | ||
| 73 | gamma_initialiser, beta_initialiser, & | ||
| 74 | moving_mean_initialiser, moving_variance_initialiser | ||
| 75 | !! Initialisers | ||
| 76 | integer, optional, intent(in) :: verbose | ||
| 77 | !! Verbosity level | ||
| 78 | type(batchnorm2d_layer_type) :: layer | ||
| 79 | !! Instance of the 2D batch normalisation layer | ||
| 80 | end function layer_setup | ||
| 81 | end interface batchnorm2d_layer_type | ||
| 82 | |||
| 83 | |||
| 84 | |||
| 85 | contains | ||
| 86 | |||
| 87 | !############################################################################### | ||
| 88 | − | subroutine finalise_batchnorm2d(this) | |
| 89 | !! Finalise 2D batch normalisation layer | ||
| 90 | implicit none | ||
| 91 | |||
| 92 | ! Arguments | ||
| 93 | type(batchnorm2d_layer_type), intent(inout) :: this | ||
| 94 | !! Instance of the 2D batch normalisation layer | ||
| 95 | |||
| 96 | − | if(allocated(this%mean)) deallocate(this%mean) | |
| 97 | − | if(allocated(this%variance)) deallocate(this%variance) | |
| 98 | − | if(allocated(this%input_shape)) deallocate(this%input_shape) | |
| 99 | − | if(allocated(this%output)) deallocate(this%output) | |
| 100 | |||
| 101 | − | end subroutine finalise_batchnorm2d | |
| 102 | !############################################################################### | ||
| 103 | |||
| 104 | |||
| 105 | !##############################################################################! | ||
| 106 | ! * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ! | ||
| 107 | !##############################################################################! | ||
| 108 | |||
| 109 | |||
| 110 | !############################################################################### | ||
| 111 | − | module function layer_setup( & | |
| 112 | − | input_shape, & | |
| 113 | momentum, epsilon, & | ||
| 114 | gamma_init_mean, gamma_init_std, & | ||
| 115 | beta_init_mean, beta_init_std, & | ||
| 116 | gamma_initialiser, beta_initialiser, & | ||
| 117 | moving_mean_initialiser, moving_variance_initialiser, & | ||
| 118 | verbose & | ||
| 119 | − | ) result(layer) | |
| 120 | !! Set up the 2D batch normalisation layer | ||
| 121 | use athena__initialiser, only: initialiser_setup | ||
| 122 | implicit none | ||
| 123 | |||
| 124 | ! Arguments | ||
| 125 | integer, dimension(:), optional, intent(in) :: input_shape | ||
| 126 | !! Input shape | ||
| 127 | real(real32), optional, intent(in) :: momentum, epsilon | ||
| 128 | !! Momentum and epsilon | ||
| 129 | real(real32), optional, intent(in) :: gamma_init_mean, gamma_init_std | ||
| 130 | !! Gamma initialisation mean and standard deviation | ||
| 131 | real(real32), optional, intent(in) :: beta_init_mean, beta_init_std | ||
| 132 | !! Beta initialisation mean and standard deviation | ||
| 133 | class(*), optional, intent(in) :: & | ||
| 134 | gamma_initialiser, beta_initialiser, & | ||
| 135 | moving_mean_initialiser, moving_variance_initialiser | ||
| 136 | !! Initialisers | ||
| 137 | integer, optional, intent(in) :: verbose | ||
| 138 | !! Verbosity level | ||
| 139 | |||
| 140 | type(batchnorm2d_layer_type) :: layer | ||
| 141 | !! Instance of the 2D batch normalisation layer | ||
| 142 | |||
| 143 | ! Local variables | ||
| 144 | integer :: verbose_ = 0 | ||
| 145 | !! Verbosity level | ||
| 146 | class(base_init_type), allocatable :: & | ||
| 147 | − | gamma_initialiser_, beta_initialiser_, & | |
| 148 | − | moving_mean_initialiser_, moving_variance_initialiser_ | |
| 149 | !! Initialisers | ||
| 150 | |||
| 151 | |||
| 152 | − | if(present(verbose)) verbose_ = verbose | |
| 153 | |||
| 154 | |||
| 155 | !--------------------------------------------------------------------------- | ||
| 156 | ! Set up momentum and epsilon | ||
| 157 | !--------------------------------------------------------------------------- | ||
| 158 | − | if(present(momentum))then | |
| 159 | − | layer%momentum = momentum | |
| 160 | else | ||
| 161 | − | layer%momentum = 0._real32 | |
| 162 | end if | ||
| 163 | − | if(present(epsilon))then | |
| 164 | − | layer%epsilon = epsilon | |
| 165 | else | ||
| 166 | − | layer%epsilon = 1.E-5_real32 | |
| 167 | end if | ||
| 168 | |||
| 169 | |||
| 170 | !--------------------------------------------------------------------------- | ||
| 171 | ! Set up initialiser mean and standard deviations | ||
| 172 | !--------------------------------------------------------------------------- | ||
| 173 | − | if(present(gamma_init_mean)) layer%gamma_init_mean = gamma_init_mean | |
| 174 | − | if(present(gamma_init_std)) layer%gamma_init_std = gamma_init_std | |
| 175 | − | if(present(beta_init_mean)) layer%beta_init_mean = beta_init_mean | |
| 176 | − | if(present(beta_init_std)) layer%beta_init_std = beta_init_std | |
| 177 | |||
| 178 | |||
| 179 | !--------------------------------------------------------------------------- | ||
| 180 | ! Define gamma and beta initialisers | ||
| 181 | !--------------------------------------------------------------------------- | ||
| 182 | − | if(present(gamma_initialiser))then | |
| 183 | − | gamma_initialiser_ = initialiser_setup(gamma_initialiser) | |
| 184 | end if | ||
| 185 | − | if(present(beta_initialiser))then | |
| 186 | − | beta_initialiser_ = initialiser_setup(beta_initialiser) | |
| 187 | end if | ||
| 188 | − | if(present(moving_mean_initialiser))then | |
| 189 | − | moving_mean_initialiser_ = initialiser_setup(moving_mean_initialiser) | |
| 190 | end if | ||
| 191 | − | if(present(moving_variance_initialiser))then | |
| 192 | − | moving_variance_initialiser_ = initialiser_setup(moving_variance_initialiser) | |
| 193 | end if | ||
| 194 | |||
| 195 | |||
| 196 | !--------------------------------------------------------------------------- | ||
| 197 | ! Set hyperparameters | ||
| 198 | !--------------------------------------------------------------------------- | ||
| 199 | call layer%set_hyperparams( & | ||
| 200 | momentum = layer%momentum, epsilon = layer%epsilon, & | ||
| 201 | gamma_init_mean = layer%gamma_init_mean, & | ||
| 202 | gamma_init_std = layer%gamma_init_std, & | ||
| 203 | beta_init_mean = layer%beta_init_mean, & | ||
| 204 | beta_init_std = layer%beta_init_std, & | ||
| 205 | gamma_initialiser = gamma_initialiser_, & | ||
| 206 | beta_initialiser = beta_initialiser_, & | ||
| 207 | moving_mean_initialiser = moving_mean_initialiser_, & | ||
| 208 | moving_variance_initialiser = moving_variance_initialiser_, & | ||
| 209 | verbose = verbose_ & | ||
| 210 | − | ) | |
| 211 | |||
| 212 | |||
| 213 | !--------------------------------------------------------------------------- | ||
| 214 | ! initialise layer shape | ||
| 215 | !--------------------------------------------------------------------------- | ||
| 216 | − | if(present(input_shape)) call layer%init(input_shape=input_shape) | |
| 217 | |||
| 218 | − | end function layer_setup | |
| 219 | !############################################################################### | ||
| 220 | |||
| 221 | |||
| 222 | !############################################################################### | ||
| 223 | − | subroutine set_hyperparams_batchnorm2d( & | |
| 224 | this, & | ||
| 225 | momentum, epsilon, & | ||
| 226 | gamma_init_mean, gamma_init_std, & | ||
| 227 | beta_init_mean, beta_init_std, & | ||
| 228 | gamma_initialiser, beta_initialiser, & | ||
| 229 | moving_mean_initialiser, moving_variance_initialiser, & | ||
| 230 | verbose ) | ||
| 231 | !! Set hyperparameters for 2D batch normalisation layer | ||
| 232 | use athena__initialiser, only: initialiser_setup | ||
| 233 | implicit none | ||
| 234 | |||
| 235 | ! Arguments | ||
| 236 | class(batchnorm2d_layer_type), intent(inout) :: this | ||
| 237 | !! Instance of the 2D batch normalisation layer | ||
| 238 | real(real32), intent(in) :: momentum, epsilon | ||
| 239 | !! Momentum and epsilon | ||
| 240 | real(real32), intent(in) :: gamma_init_mean, gamma_init_std | ||
| 241 | !! Gamma initialisation mean and standard deviation | ||
| 242 | real(real32), intent(in) :: beta_init_mean, beta_init_std | ||
| 243 | !! Beta initialisation mean and standard deviation | ||
| 244 | class(base_init_type), allocatable, intent(in) :: & | ||
| 245 | gamma_initialiser, beta_initialiser | ||
| 246 | !! Gamma and beta initialisers | ||
| 247 | class(base_init_type), allocatable, intent(in) :: & | ||
| 248 | moving_mean_initialiser, moving_variance_initialiser | ||
| 249 | !! Moving mean and variance initialisers | ||
| 250 | integer, optional, intent(in) :: verbose | ||
| 251 | !! Verbosity level | ||
| 252 | |||
| 253 | − | this%name = "batchnorm2d" | |
| 254 | − | this%type = "batc" | |
| 255 | − | this%input_rank = 3 | |
| 256 | − | this%output_rank = 3 | |
| 257 | − | this%use_bias = .true. | |
| 258 | − | this%momentum = momentum | |
| 259 | − | this%epsilon = epsilon | |
| 260 | − | if(allocated(this%kernel_init)) deallocate(this%kernel_init) | |
| 261 | − | if(.not.allocated(gamma_initialiser))then | |
| 262 | − | this%kernel_init = initialiser_setup('ones') | |
| 263 | else | ||
| 264 | − | allocate(this%kernel_init, source=gamma_initialiser) | |
| 265 | end if | ||
| 266 | − | if(allocated(this%bias_init)) deallocate(this%bias_init) | |
| 267 | − | if(.not.allocated(beta_initialiser))then | |
| 268 | − | this%bias_init = initialiser_setup('zeros') | |
| 269 | else | ||
| 270 | − | allocate(this%bias_init, source=beta_initialiser) | |
| 271 | end if | ||
| 272 | − | if(.not.allocated(moving_mean_initialiser))then | |
| 273 | − | this%moving_mean_init = initialiser_setup('zeros') | |
| 274 | else | ||
| 275 | − | this%moving_mean_init = moving_mean_initialiser | |
| 276 | end if | ||
| 277 | − | if(.not.allocated(moving_variance_initialiser))then | |
| 278 | − | this%moving_variance_init = initialiser_setup('ones') | |
| 279 | else | ||
| 280 | − | this%moving_variance_init = moving_variance_initialiser | |
| 281 | end if | ||
| 282 | − | this%gamma_init_mean = gamma_init_mean | |
| 283 | − | this%gamma_init_std = gamma_init_std | |
| 284 | − | this%beta_init_mean = beta_init_mean | |
| 285 | − | this%beta_init_std = beta_init_std | |
| 286 | − | this%kernel_init%mean = this%gamma_init_mean | |
| 287 | − | this%kernel_init%std = this%gamma_init_std | |
| 288 | − | this%bias_init%mean = this%beta_init_mean | |
| 289 | − | this%bias_init%std = this%beta_init_std | |
| 290 | − | if(present(verbose))then | |
| 291 | − | if(abs(verbose).gt.0)then | |
| 292 | write(*,'("BATCHNORM2D gamma (kernel) initialiser: ",A)') & | ||
| 293 | − | trim(this%kernel_init%name) | |
| 294 | write(*,'("BATCHNORM2D beta (bias) initialiser: ",A)') & | ||
| 295 | − | trim(this%bias_init%name) | |
| 296 | write(*,'("BATCHNORM2D moving mean initialiser: ",A)') & | ||
| 297 | − | trim(this%moving_mean_init%name) | |
| 298 | write(*,'("BATCHNORM2D moving variance initialiser: ",A)') & | ||
| 299 | − | trim(this%moving_variance_init%name) | |
| 300 | end if | ||
| 301 | end if | ||
| 302 | |||
| 303 | − | end subroutine set_hyperparams_batchnorm2d | |
| 304 | !############################################################################### | ||
| 305 | |||
| 306 | |||
| 307 | !##############################################################################! | ||
| 308 | ! * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ! | ||
| 309 | !##############################################################################! | ||
| 310 | |||
| 311 | |||
| 312 | !############################################################################### | ||
| 313 | − | subroutine read_batchnorm2d(this, unit, verbose) | |
| 314 | !! Read 2D batch normalisation layer from file | ||
| 315 | use athena__tools_infile, only: assign_val, assign_vec, move | ||
| 316 | use coreutils, only: to_lower, to_upper, icount | ||
| 317 | use athena__initialiser, only: initialiser_setup | ||
| 318 | implicit none | ||
| 319 | |||
| 320 | ! Arguments | ||
| 321 | class(batchnorm2d_layer_type), intent(inout) :: this | ||
| 322 | !! Instance of the 2D batch normalisation layer | ||
| 323 | integer, intent(in) :: unit | ||
| 324 | !! File unit | ||
| 325 | integer, optional, intent(in) :: verbose | ||
| 326 | !! Verbosity level | ||
| 327 | |||
| 328 | ! Local variables | ||
| 329 | integer :: stat, verbose_ = 0 | ||
| 330 | !! Status and verbosity level | ||
| 331 | integer :: i, j, k, l, c, itmp1, iline, final_line | ||
| 332 | !! Loop variables and temporary integer | ||
| 333 | integer :: num_channels | ||
| 334 | !! Number of channels | ||
| 335 | real(real32) :: momentum = 0._real32, epsilon = 1.E-5_real32 | ||
| 336 | !! Momentum and epsilon | ||
| 337 | − | class(base_init_type), allocatable :: gamma_initialiser, beta_initialiser | |
| 338 | !! Initialisers | ||
| 339 | class(base_init_type), allocatable :: & | ||
| 340 | − | moving_mean_initialiser, moving_variance_initialiser | |
| 341 | !! Moving mean and variance initialisers | ||
| 342 | character(14) :: gamma_initialiser_name='', beta_initialiser_name='' | ||
| 343 | !! Initialisers | ||
| 344 | character(14) :: & | ||
| 345 | moving_mean_initialiser_name='', & | ||
| 346 | moving_variance_initialiser_name='' | ||
| 347 | !! Moving mean and variance initialisers | ||
| 348 | character(256) :: buffer, tag, err_msg | ||
| 349 | !! Buffer, tag, and error message | ||
| 350 | |||
| 351 | integer, dimension(3) :: input_shape | ||
| 352 | !! Input shape | ||
| 353 | − | real(real32), allocatable, dimension(:) :: data_list | |
| 354 | !! Data list | ||
| 355 | integer, dimension(2) :: param_lines | ||
| 356 | !! Lines where parameters are found | ||
| 357 | |||
| 358 | |||
| 359 | ! Initialise optional arguments | ||
| 360 | !--------------------------------------------------------------------------- | ||
| 361 | − | if(present(verbose)) verbose_ = verbose | |
| 362 | |||
| 363 | |||
| 364 | ! Loop over tags in layer card | ||
| 365 | !--------------------------------------------------------------------------- | ||
| 366 | − | iline = 0 | |
| 367 | − | param_lines = 0 | |
| 368 | − | final_line = 0 | |
| 369 | − | tag_loop: do | |
| 370 | |||
| 371 | ! Check for end of file | ||
| 372 | !------------------------------------------------------------------------ | ||
| 373 | − | read(unit,'(A)',iostat=stat) buffer | |
| 374 | − | if(stat.ne.0)then | |
| 375 | write(err_msg,'("file encountered error (EoF?) before END ",A)') & | ||
| 376 | − | to_upper(this%name) | |
| 377 | − | call stop_program(err_msg) | |
| 378 | − | return | |
| 379 | end if | ||
| 380 | − | if(trim(adjustl(buffer)).eq."") cycle tag_loop | |
| 381 | |||
| 382 | ! Check for end of layer card | ||
| 383 | !------------------------------------------------------------------------ | ||
| 384 | − | if(trim(adjustl(buffer)).eq."END "//to_upper(trim(this%name)))then | |
| 385 | − | final_line = iline | |
| 386 | − | backspace(unit) | |
| 387 | − | exit tag_loop | |
| 388 | end if | ||
| 389 | − | iline = iline + 1 | |
| 390 | |||
| 391 | − | tag=trim(adjustl(buffer)) | |
| 392 | − | if(scan(buffer,"=").ne.0) tag=trim(tag(:scan(tag,"=")-1)) | |
| 393 | |||
| 394 | ! Read parameters from save file | ||
| 395 | !------------------------------------------------------------------------ | ||
| 396 | − | select case(trim(tag)) | |
| 397 | case("INPUT_SHAPE") | ||
| 398 | − | call assign_vec(buffer, input_shape, itmp1) | |
| 399 | case("MOMENTUM") | ||
| 400 | − | call assign_val(buffer, momentum, itmp1) | |
| 401 | case("EPSILON") | ||
| 402 | − | call assign_val(buffer, epsilon, itmp1) | |
| 403 | case("NUM_CHANNELS") | ||
| 404 | − | call assign_val(buffer, num_channels, itmp1) | |
| 405 | − | write(0,*) "NUM_CHANNELS and INPUT_SHAPE are conflicting parameters" | |
| 406 | − | write(0,*) "NUM_CHANNELS will be ignored" | |
| 407 | case("GAMMA_INITIALISER", "KERNEL_INITIALISER") | ||
| 408 | − | if(param_lines(1).ne.0)then | |
| 409 | − | write(err_msg,'("GAMMA and GAMMA_INITIALISER defined. Using GAMMA only.")') | |
| 410 | − | call print_warning(err_msg) | |
| 411 | end if | ||
| 412 | − | call assign_val(buffer, gamma_initialiser_name, itmp1) | |
| 413 | case("BETA_INITIALISER", "BIAS_INITIALISER") | ||
| 414 | − | if(param_lines(2).ne.0)then | |
| 415 | − | write(err_msg,'("BETA and BETA_INITIALISER defined. Using BETA only.")') | |
| 416 | − | call print_warning(err_msg) | |
| 417 | end if | ||
| 418 | − | call assign_val(buffer, beta_initialiser_name, itmp1) | |
| 419 | case("MOVING_MEAN_INITIALISER") | ||
| 420 | − | call assign_val(buffer, moving_mean_initialiser_name, itmp1) | |
| 421 | case("MOVING_VARIANCE_INITIALISER") | ||
| 422 | − | call assign_val(buffer, moving_variance_initialiser_name, itmp1) | |
| 423 | case("GAMMA") | ||
| 424 | − | gamma_initialiser_name = 'zeros' | |
| 425 | − | param_lines(1) = iline | |
| 426 | case("BETA") | ||
| 427 | − | beta_initialiser_name = 'zeros' | |
| 428 | − | param_lines(2) = iline | |
| 429 | case default | ||
| 430 | ! Don't look for "e" due to scientific notation of numbers | ||
| 431 | ! ... i.e. exponent (E+00) | ||
| 432 | − | if(scan(to_lower(trim(adjustl(buffer))),& | |
| 433 | 'abcdfghijklmnopqrstuvwxyz').eq.0)then | ||
| 434 | − | cycle tag_loop | |
| 435 | − | elseif(tag(:3).eq.'END')then | |
| 436 | − | cycle tag_loop | |
| 437 | end if | ||
| 438 | write(err_msg,'("Unrecognised line in input file: ",A)') & | ||
| 439 | − | trim(adjustl(buffer)) | |
| 440 | − | call stop_program(err_msg) | |
| 441 | − | return | |
| 442 | end select | ||
| 443 | end do tag_loop | ||
| 444 | − | gamma_initialiser = initialiser_setup(gamma_initialiser_name) | |
| 445 | − | beta_initialiser = initialiser_setup(beta_initialiser_name) | |
| 446 | − | moving_mean_initialiser = initialiser_setup(moving_mean_initialiser_name) | |
| 447 | − | moving_variance_initialiser = initialiser_setup(moving_variance_initialiser_name) | |
| 448 | |||
| 449 | |||
| 450 | ! Set hyperparameters and initialise layer | ||
| 451 | !--------------------------------------------------------------------------- | ||
| 452 | − | num_channels = input_shape(size(input_shape,1)) | |
| 453 | call this%set_hyperparams( & | ||
| 454 | momentum = momentum, & | ||
| 455 | epsilon = epsilon, & | ||
| 456 | gamma_init_mean = this%gamma_init_mean, & | ||
| 457 | gamma_init_std = this%gamma_init_std, & | ||
| 458 | beta_init_mean = this%beta_init_mean, & | ||
| 459 | beta_init_std = this%beta_init_std, & | ||
| 460 | gamma_initialiser = gamma_initialiser, & | ||
| 461 | beta_initialiser = beta_initialiser, & | ||
| 462 | moving_mean_initialiser = moving_mean_initialiser, & | ||
| 463 | moving_variance_initialiser = moving_variance_initialiser, & | ||
| 464 | verbose = verbose_ & | ||
| 465 | − | ) | |
| 466 | − | call this%init(input_shape = input_shape) | |
| 467 | |||
| 468 | |||
| 469 | ! Check if WEIGHTS card was found | ||
| 470 | !--------------------------------------------------------------------------- | ||
| 471 | − | allocate(data_list(num_channels), source=0._real32) | |
| 472 | − | do i = 2, 1, -1 | |
| 473 | − | if(param_lines(i).eq.0) cycle | |
| 474 | − | call move(unit, param_lines(i) - iline, iostat=stat) | |
| 475 | − | iline = param_lines(i) + 1 | |
| 476 | − | c = 1 | |
| 477 | − | k = 1 | |
| 478 | − | data_list = 0._real32 | |
| 479 | − | data_concat_loop: do while(c.le.num_channels) | |
| 480 | − | iline = iline + 1 | |
| 481 | − | read(unit,'(A)',iostat=stat) buffer | |
| 482 | − | if(stat.ne.0) exit data_concat_loop | |
| 483 | − | k = icount(buffer) | |
| 484 | − | read(buffer,*,iostat=stat) (data_list(j),j=c,c+k-1) | |
| 485 | − | c = c + k | |
| 486 | end do data_concat_loop | ||
| 487 | − | read(unit,'(A)',iostat=stat) buffer | |
| 488 | − | select case(i) | |
| 489 | case(1) ! gamma | ||
| 490 | − | this%params(1)%val(1:this%num_channels,1) = data_list | |
| 491 | − | if(trim(adjustl(buffer)).ne."END GAMMA")then | |
| 492 | write(err_msg,'("END GAMMA not where expected: ",A)') & | ||
| 493 | − | trim(adjustl(buffer)) | |
| 494 | − | call stop_program(err_msg) | |
| 495 | − | return | |
| 496 | end if | ||
| 497 | case(2) ! beta | ||
| 498 | − | this%params(1)%val(this%num_channels+1:this%num_channels*2,1) = & | |
| 499 | − | data_list | |
| 500 | − | if(trim(adjustl(buffer)).ne."END BETA")then | |
| 501 | write(err_msg,'("END BETA not where expected: ",A)') & | ||
| 502 | − | trim(adjustl(buffer)) | |
| 503 | − | call stop_program(err_msg) | |
| 504 | − | return | |
| 505 | end if | ||
| 506 | end select | ||
| 507 | end do | ||
| 508 | − | deallocate(data_list) | |
| 509 | |||
| 510 | |||
| 511 | ! Check for end of layer card | ||
| 512 | !--------------------------------------------------------------------------- | ||
| 513 | − | call move(unit, final_line - iline, iostat=stat) | |
| 514 | − | read(unit,'(A)') buffer | |
| 515 | − | if(trim(adjustl(buffer)).ne."END "//to_upper(trim(this%name)))then | |
| 516 | − | write(0,*) trim(adjustl(buffer)) | |
| 517 | − | write(err_msg,'("END ",A," not where expected")') to_upper(this%name) | |
| 518 | − | call stop_program(err_msg) | |
| 519 | − | return | |
| 520 | end if | ||
| 521 | |||
| 522 | − | end subroutine read_batchnorm2d | |
| 523 | !############################################################################### | ||
| 524 | |||
| 525 | |||
| 526 | !############################################################################### | ||
| 527 | − | function read_batchnorm2d_layer(unit, verbose) result(layer) | |
| 528 | implicit none | ||
| 529 | integer, intent(in) :: unit | ||
| 530 | integer, optional, intent(in) :: verbose | ||
| 531 | class(base_layer_type), allocatable :: layer | ||
| 532 | |||
| 533 | integer :: verbose_ = 0 | ||
| 534 | |||
| 535 | − | if(present(verbose)) verbose_ = verbose | |
| 536 | − | allocate(layer, source=batchnorm2d_layer_type()) | |
| 537 | − | call layer%read(unit, verbose=verbose_) | |
| 538 | |||
| 539 | − | end function read_batchnorm2d_layer | |
| 540 | !############################################################################### | ||
| 541 | |||
| 542 | |||
| 543 | !############################################################################### | ||
| 544 | − | subroutine build_from_onnx_batchnorm2d( & | |
| 545 | − | this, node, initialisers, value_info, verbose & | |
| 546 | ) | ||
| 547 | !! Read ONNX attributes for 2D batch normalisation layer | ||
| 548 | use athena__initialiser_data, only: data_init_type | ||
| 549 | implicit none | ||
| 550 | |||
| 551 | ! Arguments | ||
| 552 | class(batchnorm2d_layer_type), intent(inout) :: this | ||
| 553 | !! Instance of the 2D batch normalisation layer | ||
| 554 | type(onnx_node_type), intent(in) :: node | ||
| 555 | !! ONNX node information | ||
| 556 | type(onnx_initialiser_type), dimension(:), intent(in) :: initialisers | ||
| 557 | !! ONNX initialiser information | ||
| 558 | type(onnx_tensor_type), dimension(:), intent(in) :: value_info | ||
| 559 | !! ONNX value info | ||
| 560 | integer, intent(in) :: verbose | ||
| 561 | !! Verbosity level | ||
| 562 | |||
| 563 | ! Local variables | ||
| 564 | integer :: i | ||
| 565 | !! Loop index | ||
| 566 | real(real32) :: epsilon, momentum | ||
| 567 | !! Epsilon and momentum values | ||
| 568 | character(256) :: val | ||
| 569 | !! Attribute value | ||
| 570 | − | class(base_init_type), allocatable :: gamma_initialiser, beta_initialiser | |
| 571 | class(base_init_type), allocatable :: & | ||
| 572 | − | moving_mean_initialiser, moving_variance_initialiser | |
| 573 | |||
| 574 | ! Set default values | ||
| 575 | − | epsilon = 1.E-5_real32 | |
| 576 | − | momentum = 0.9_real32 | |
| 577 | |||
| 578 | ! Parse ONNX attributes | ||
| 579 | − | do i = 1, size(node%attributes) | |
| 580 | − | val = node%attributes(i)%val | |
| 581 | − | select case(trim(adjustl(node%attributes(i)%name))) | |
| 582 | case("epsilon") | ||
| 583 | − | read(val,*) epsilon | |
| 584 | case("momentum") | ||
| 585 | − | read(val,*) momentum | |
| 586 | case default | ||
| 587 | ! Do nothing | ||
| 588 | write(0,*) "WARNING: Unrecognised attribute in ONNX BATCHNORM2D & | ||
| 589 | − | &layer: ", trim(adjustl(node%attributes(i)%name)) | |
| 590 | end select | ||
| 591 | end do | ||
| 592 | |||
| 593 | ! Check for 4 initialisers: gamma, beta, mean, variance | ||
| 594 | − | if(size(initialisers).ne.4)then | |
| 595 | call stop_program("ONNX BATCHNORM2D layer requires 4 initialisers & | ||
| 596 | − | &(gamma, beta, mean, variance)") | |
| 597 | − | return | |
| 598 | end if | ||
| 599 | |||
| 600 | ! ONNX BatchNormalization order: gamma, beta, mean, variance | ||
| 601 | − | gamma_initialiser = data_init_type( data = initialisers(1)%data ) | |
| 602 | − | beta_initialiser = data_init_type( data = initialisers(2)%data ) | |
| 603 | − | moving_mean_initialiser = data_init_type( data = initialisers(3)%data ) | |
| 604 | − | moving_variance_initialiser = data_init_type( data = initialisers(4)%data ) | |
| 605 | |||
| 606 | call this%set_hyperparams( & | ||
| 607 | momentum = momentum, & | ||
| 608 | epsilon = epsilon, & | ||
| 609 | gamma_init_mean = 1.0_real32, & | ||
| 610 | gamma_init_std = 0.0_real32, & | ||
| 611 | beta_init_mean = 0.0_real32, & | ||
| 612 | beta_init_std = 0.0_real32, & | ||
| 613 | gamma_initialiser = gamma_initialiser, & | ||
| 614 | beta_initialiser = beta_initialiser, & | ||
| 615 | moving_mean_initialiser = moving_mean_initialiser, & | ||
| 616 | moving_variance_initialiser = moving_variance_initialiser, & | ||
| 617 | verbose = verbose & | ||
| 618 | − | ) | |
| 619 | |||
| 620 | − | end subroutine build_from_onnx_batchnorm2d | |
| 621 | !############################################################################### | ||
| 622 | |||
| 623 | |||
| 624 | !##############################################################################! | ||
| 625 | ! * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ! | ||
| 626 | !##############################################################################! | ||
| 627 | |||
| 628 | |||
| 629 | !############################################################################### | ||
| 630 | − | subroutine forward_batchnorm2d(this, input) | |
| 631 | !! Forward propagation | ||
| 632 | implicit none | ||
| 633 | |||
| 634 | ! Arguments | ||
| 635 | class(batchnorm2d_layer_type), intent(inout) :: this | ||
| 636 | !! Instance of the 2D batch normalisation layer | ||
| 637 | class(array_type), dimension(:,:), intent(in) :: input | ||
| 638 | !! Input values | ||
| 639 | |||
| 640 | ! Local variables | ||
| 641 | class(batchnorm_array_type), pointer :: ptr | ||
| 642 | ! Pointer array | ||
| 643 | |||
| 644 | |||
| 645 | − | select case(this%inference) | |
| 646 | case(.true.) | ||
| 647 | ! Do not perform the drop operation | ||
| 648 | |||
| 649 | − | ptr => batchnorm_inference(input(1,1), this%params(1), & | |
| 650 | − | this%mean(:), this%variance(:), this%epsilon & | |
| 651 | − | ) | |
| 652 | |||
| 653 | case default | ||
| 654 | ! Perform the drop operation | ||
| 655 | ptr => batchnorm( & | ||
| 656 | − | input(1,1), this%params(1),& | |
| 657 | − | this%momentum, this%mean(:), this%variance(:), this%epsilon & | |
| 658 | − | ) | |
| 659 | |||
| 660 | end select | ||
| 661 | − | select type(output => this%output(1,1)) | |
| 662 | type is(batchnorm_array_type) | ||
| 663 | − | call output%assign_shallow(ptr) | |
| 664 | − | output%epsilon = ptr%epsilon | |
| 665 | − | output%mean = ptr%mean | |
| 666 | − | output%variance = ptr%variance | |
| 667 | end select | ||
| 668 | − | deallocate(ptr) | |
| 669 | − | this%output(1,1)%is_temporary = .false. | |
| 670 | |||
| 671 | − | end subroutine forward_batchnorm2d | |
| 672 | !############################################################################### | ||
| 673 | |||
| 674 | − | end module athena__batchnorm2d_layer | |
| 675 |